The Pollutant Emission Characteristics of Lean-Rich Combustion System with Exhaust Gas Recirculation

2015 ◽  
Vol 20 (2) ◽  
pp. 28-35
Author(s):  
Wheesung Oh ◽  
Chang-Eon Lee ◽  
Byeonghun Yu
Author(s):  
H. W. Wang ◽  
Z. H. Huang ◽  
L. B. Zhou ◽  
D. M. Jiang ◽  
Z. L. Yang

Investigations of emission characteristics were carried out on a compression ignition, dimethyl ether engine (DME) with exhaust gas recirculation (EGR) and on a diesel engine with a dimethyl carbonate (DMC) additive. The experimental results show that the DME engine with EGR can simultaneously reduce smoke and NOx emissions. The NOx can be reduced by about 20 per cent for every 10 per cent of EGR introduction, while smoke remains at zero. The diesel equivalent brake specific fuel consumption (b.s.f.c.) shows a slight decrease when DMC is added, while the effective thermal efficiency shows a slight improvement. It is found that the smoke reduction rate and smoke show a linear relationship with DMC percentage or oxygen mass percentage in the diesel fuel. For the specific brake mean effective pressure (b.m.e.p.), smoke will be reduced by 20 per cent for every 10 per cent DMC added and by 40 per cent when the oxygen mass percentage in the fuel reaches 10 per cent. The CO decreases when DMC is added, while NOx shows an increase. This difference is pronounced at a high b.m.e.p. For the specific b.m.e.p., CO and NOx show a linear relationship with DMC mass percentage in the fuel; CO will be reduced by 20 per cent while NOx will be increased by 20 per cent for every 10 per cent DMC added.


Energies ◽  
2020 ◽  
Vol 13 (11) ◽  
pp. 2973
Author(s):  
Taejung Kim ◽  
Jungsoo Park ◽  
Honghyun Cho

The combustion performance of a conventional rail diesel engine was investigated by measuring the exhaust gas with the respect to the number of injector holes, fuel type, and the use of exhaust gas recirculation (EGR), to provide a detailed reduction of environmental pollutants. It was found that a six- or seven-hole injector was more effective than a five-hole injector for reducing the exhaust gas. In addition, the mixing of 20% biodiesel oil with diesel most effectively reduced the HC and NOx contents. The technology generally reduced the NOx and CO contents of the exhaust, but had no significant effect on the HC and CO2 contents.


2015 ◽  
Vol 2015 ◽  
pp. 1-10
Author(s):  
Chidambaram Kannan ◽  
Thulasi Vijayakumar

Homogeneous combustion has the potential of achieving both near-zero emissions and low specific fuel consumption. However, the accomplishment of homogeneous combustion depends on the air flow structure inside the combustion chamber, fuel injection conditions, and turbulence as well as ignition conditions. Various methods and procedures are being adopted to establish the homogeneous combustion inside the engine cylinder. In this research work, a highly porous ceramic structure was introduced into the combustion chamber (underside of the cylinder head). The influence of operating parameters such as exhaust gas recirculation (EGR) and injection timing on the combustion, performance, and emission characteristics of such developed engine was investigated in this research work.


Author(s):  
Sundar Lal ◽  
Devendra Singh ◽  
Ajay Kumar Sharma

The primary aim of the present experiment is to study the productivity, emission behavior of the HCCI engine using exhaust gas recirculation at different flow rates under different load conditions on the controlled combustion of the HCCI diesel-fueled engine, to know the best performance and least emissions attainable and to further investigate the impact of the engine. Experiments have been performed for various percentages of exhaust gas recirculation with diesel fuel under load variations. These analyses of the EGR at varying load with the findings acquired are plotted and contrasted for the output and emission characteristics that have been carried out in order to identify the efficient operation of the diesel engine with the least environmental pollution.


Sign in / Sign up

Export Citation Format

Share Document