YAYLA, a program for handling area detector data of glasses

Author(s):  
M. Ende ◽  
G. Kloess
Keyword(s):  
1986 ◽  
Vol 47 (C5) ◽  
pp. C5-109-C5-113
Author(s):  
J. W. CAMPBELL ◽  
D. CROFT ◽  
J. R. HELLIWELL ◽  
P. MACHIN ◽  
M. Z. PAPIZ ◽  
...  

2019 ◽  
Vol 57 (5) ◽  
pp. 647-662
Author(s):  
Sabina Kovač ◽  
Predrag Dabić ◽  
Aleksandar Kremenović ◽  
Aleksandar Pačevski ◽  
Ljiiljana Karanović ◽  
...  

Abstract The crystal structure of cosalite from the Trepča orefield was refined in the orthorhombic space group Pnma [a = 23.7878 (9), b = 4.0566 (3), c = 19.1026 (8) Å, V = 1843.35 (17) Å3, Z = 2] from single-crystal data (MoKα X-ray diffraction, CCD area detector) to the conventional R1 factor 0.031 for 1516 unique reflections with I > 2σ(I). The chemical formula (Cu0.15Ag0.24)+(Fe0.19Pb7.20)2+(Bi7.06Sb1.06)3+S20, calculated on the basis of 20 S atoms per formula unit, was determined by WDX. The unit cell contains 18 + 2 symmetrically nonequivalent atomic sites: 10 occupied by S; two by pure Pb (Pb3 and Pb4); one by pure Bi (Bi1); two by a combination of Bi and small amounts of Sb (Bi2/Sb2, Bi4/Sb3); two by Pb and Bi, and in one of these also by a small amount of Ag [Me1 = Pb2 >> Bi5 > Ag1, Me3 = Pb1 >> Bi3]; and finally one site, Me2 (Bi6 >> □), is partly occupied by Bi and partly split into an additional two adjacent trigonal planar “interstitial positions”, Cu1 and Cu2, where small amounts of Cu, Ag, and Fe can be situated. All atoms are at 4c special positions at y = 0.25 or 0.75. The structure consists of slightly to moderately distorted MeS6 octahedra sharing edges, bicapped trigonal PbS8 coordination prisms, and fairly distorted Cu1S6 and Cu2S4 polyhedra. The effects of the cation substitutions, bond valence sums, and the polyhedral characteristics are compared with other published cosalite-type structures. Among known cosalite-type structures, the largest volume contraction is shown by sample 4 (Altenberg) and involves the replacement of large cations (Bi3+ and Pb2+) by the smaller Sb3+, as well as Cu+ and Ag+. These replacements are reflected in the variations of individual Me–S bond distances, which are accompanied by variations in average Me–S distances. The degree of polyhedral distortion, Δ, progressively increases for the four Bi-hosting sites of nine cosalite-type structures: Me2 < Bi2 < Bi1 < Bi4. The Bi4 and Me3 are the most and the Me1 and Me2 are the least distorted octahedral sites of the nine cosalite-type structures.


2003 ◽  
Vol 36 (1) ◽  
pp. 141-145 ◽  
Author(s):  
L. J. Farrugia ◽  
P. Macchi ◽  
A. Sironi

The coordination complex [Ni(en)3]2+(NO{}_{3}^{- })2(en = 1,2-diaminoethane) undergoes a sharp reversible displacive phase transition at ∼109 K, changing space group fromP6322 above the transition temperature toP6522 below. The phase change is accompanied by a tripling of thecaxis on cooling, resulting in an easy detection of the transition in images from area-detector diffractometers. The transition has been followed using a Nonius KappaCCD and a Bruker SMART APEX CCD. Data sets were collected over the temperature range 100–113 K and integrated using the low-temperature orientation matrix. Reflections withl≠ 3nshow a smooth and rapid decrease in intensity to zero on warming from 106.5 to 111 K. The results are reproducible to within ±2 K in two laboratories and suggest that this compound may be useful as a liquid-nitrogen cryo-calibrant for diffraction instruments equipped with area detectors.


2014 ◽  
Vol 47 (4) ◽  
pp. 1449-1451 ◽  
Author(s):  
Sergei Sulyanov ◽  
Pavel Dorovatovskii ◽  
Hans Boysen

A simple procedure for the measurement of the degree of linear polarization at a synchrotron radiation station is described. The diffraction pattern from a glass plate set perpendicular to the incident beam is registered using a two-dimensional area detector. The intensity variation along the azimuth angle ρ at a constant diffraction angle is fitted to the theoretical cos2ρ dependence. The results of measurements performed at a synchrotron radiation station with a CCD detector on the beam from a bending magnet are presented.


1998 ◽  
Vol 62 (04) ◽  
pp. 461-469 ◽  
Author(s):  
Peter C. Burns

Abstract The crystal structure of szenicsite, Cu3MoO4(OH)4, orthorhombic, a = 8.5201(8), b = 12.545(1), c = 6.0794(6) Å, V = 649.8(2) Å3, space group Pnnm, Z = 4, has been solved by direct methods and refined by least-squares techniques to an agreement index (R) of 3.34% and a goodness-of-fit (S) of 1.11 for 686 unique observed [|F| ⩾ 4σF] reflections collected using graphite-monochromated Mo-Kα X-radiation and a CCD area detector. The structure contains three unique Cu2+ positions that are each coordinated by six anions in distorted octahedral arrangements; the distortions of the octahedra are due to the Jahn-Teller effect associated with a d 9 metal in an octahedral ligand-field. The single unique Mo6+ position is tetrahedrally coordinated by four O2− anions. The Cu2+ϕ6 (ϕ: unspecified ligand) octahedra share trans edges to form rutile-like chains, three of which join by the sharing of octahedral edges to form triple chains that are parallel to [001]. The MoO4 tetrahedra are linked to either side of the triple chain of Cu2+ϕ6 octahedra by the sharing of two vertices per tetrahedron, and the resulting chains are cross-linked through tetrahedral-octahedral vertex sharing to form a framework structure. The structure of szenicsite is closely related to that of antlerite, Cu3SO4(OH)4, which contains similar triple chains of edge-sharing Cu2+ϕ6 octahedra.


2017 ◽  
Vol 24 (2) ◽  
pp. 521-530 ◽  
Author(s):  
S. Huotari ◽  
Ch. J. Sahle ◽  
Ch. Henriquet ◽  
A. Al-Zein ◽  
K. Martel ◽  
...  

An end-station for X-ray Raman scattering spectroscopy at beamline ID20 of the European Synchrotron Radiation Facility is described. This end-station is dedicated to the study of shallow core electronic excitations using non-resonant inelastic X-ray scattering. The spectrometer has 72 spherically bent analyzer crystals arranged in six modular groups of 12 analyzer crystals each for a combined maximum flexibility and large solid angle of detection. Each of the six analyzer modules houses one pixelated area detector allowing for X-ray Raman scattering based imaging and efficient separation of the desired signal from the sample and spurious scattering from the often used complicated sample environments. This new end-station provides an unprecedented instrument for X-ray Raman scattering, which is a spectroscopic tool of great interest for the study of low-energy X-ray absorption spectra in materials under in situ conditions, such as in operando batteries and fuel cells, in situ catalytic reactions, and extreme pressure and temperature conditions.


2013 ◽  
Vol 200 (6) ◽  
pp. W593-W602 ◽  
Author(s):  
Yoshiharu Ohno ◽  
Mizuho Nishio ◽  
Hisanobu Koyama ◽  
Yasuko Fujisawa ◽  
Takeshi Yoshikawa ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document