The crystal structure of C.I. Pigment Red 2, 1′-(2,5-dichlorophenyl)azo-2′hydroxy-3′-phenylamidonaphthalene

Author(s):  
A. Whitaker

AbstractThe crystal and molecular structure of C.I. Pigment Red 2, l′-(2,5-dichlorophenyl)azo-2′-hydroxy-3′-phenylamidonaphthalene has been determined by x-ray diffraction techniques. It crystallizes in the monoclinic system with cell parametersThe hydrogen atoms have been found and included but not refined. The final residual is 15.3%. The molecule is probably in the form of the hydrazone tautomer. The intramolecular hydrogen bonds keep most of the molecule approximately planar while it appears that the remainder is held in the same plane due to steric hinderence between the molecules. The molecules are packed in columns with alternate molecules antiparallel and are linked by van der Waals forces.

Author(s):  
A. Whitaker

AbstractThe crystal and molecular structure of C.I. Pigment Red 6, 4-chloro-2-nitrophenylazo-2-naphthol has been determined by x-ray diffraction techniques. It crystallizes in the monoclinic system with cell parameters


A complex consisting of one molecule of 5-bromouridine ( BUR ) and one molecule of di­methylsulphoxide ( DMSO ) has been prepared in the form of monoclinic crystals. The unit cell parameters are as follows, a = 13⋅65 ± 0⋅01, b = 4.820 ± 0⋅005, c = 12⋅09 ± 0⋅01 Å, β = 91⋅8 ± 0.1°, space group P 2 1 . X-ray diffraction data ( ⋋ = 1⋅5418 Å) for 1389 independent reflexions were collected and the structure was determined from Patterson syntheses which gave the coordinates of the bromine and sulphur atoms. Fourier syntheses followed by least-squares refinement (including anisotropic temperature parameters) reduced the agreement index R to 0⋅067. The bond lengths and angles for each molecule are given, and it is shown that hydrogen bonds are formed between the oxygen atom of the DMSO molecule and the 03' and 05' of the BUR molecules. A comparison is made between the conformation of the BUR molecule in this complex and that of the same molecule in two other structures.


1982 ◽  
Vol 60 (3) ◽  
pp. 362-367 ◽  
Author(s):  
Gordon W. Bushnell ◽  
Reginald H. Mitchell

The crystal structure of syn-2,11-diselena[3,3]metacyclophane, 1a, has been determined by single crystal X-ray diffraction and refined to an R-value of 0.039. The crystal structure is monoclinic with a = 1926(1), b = 801.4(3), c = 924(1) pm, β = 98.9(1)°, and is isomorphous with that of the analogous sulphur compound. The space group is P21/n with 4 molecules per cell, D(meas) = 1.733 g cm−3, D(calcd) = 1.726 g cm−3. The molecule has the syn-conformation with the largest possible Se—Se distance of 721.8 pm. The benzenoid rings form a dihedral angle of 19.1°. The distance between the internal aryl hydrogen atoms on rings 1 and 2 is 285.1 pm. The internal aryl C atoms are 314.6 pm apart. The 1Hmr solution spectra of 1a are consistent with the solid state structure, and can be explained without involving equilibration with an anti-conformer.


1996 ◽  
Vol 49 (9) ◽  
pp. 951 ◽  
Author(s):  
SJ Grabowski ◽  
SJ Grabowski ◽  
J Wilamowski ◽  
J Wilamowski ◽  
D Osman ◽  
...  

2-Methyl-3-(2-methylphenyl)but-1-ene-1,1-dicarbonitrile (MMBD) has been synthesized from 3-(o-tolyl)butan-2-one. The crystal and molecular structure of this compound was solved by X-ray diffraction, with estimated standard deviations ≤ � 0.005 Ǻ for bond lengths, and ≤ 0.3° for bond angles. Intramolecular interactions of the C≡N group, i.e. of the C-H...N, C-H...π (electrons) and C-H...C type, were observed, and the possibility of weak intramolecular hydrogen bridges in the molecule of MMBD was considered. The geometry of the MMBD molecule from AM1 calculations was compared with the X-ray structure.


2011 ◽  
Vol 34 (5-6) ◽  
pp. 127-130 ◽  
Author(s):  
Yaya Sow ◽  
Libasse Diop ◽  
Kieran C. Molloy ◽  
Gabrielle Kociok-Köhn

Abstract The title compounds [R2NH2][C2O4SnMe3](R=i-Bu, Cy), in which tin atoms adopt a distorted trigonal bipyramidal configuration, have been prepared and submitted to an X-ray diffraction study. These compounds have been obtained from the reaction of (Cy2NH2)2C2O4·H2O or (i-Bu2NH2)2C2O4 with SnMe3Cl. In both [R2NH2][C2O4SnMe3] compounds, the trans complex has an almost regular trigonal bipyramidal geometry around the tin atom. The SnMe3 residues are connected as a chain with bridging oxalate anions in a trans-SnC3O2 framework, the oxygen atoms being in axial positions. The cations connect linear adjacent chains through NH…O hydrogen bonds giving layered structures.


2011 ◽  
Vol 6 (11) ◽  
pp. 1934578X1100601
Author(s):  
Yang Li ◽  
Jun-Hui Zhou ◽  
Gui-Jun Han ◽  
Min-Juan Wang ◽  
Wen-Ji Sun ◽  
...  

The crystal structure of natural diterpenoid alkaloid ranaconitine isolated from Aconitum sinomontanum Nakai has been determined by single crystal X-ray diffraction analysis. The crystal presents a monoclinic system, space group C2 with Z = 4, unit cell dimensions a = 30.972(19) Å, b = 7.688(5) Å, and c = 19.632(12) Å. Moreover, the intermolecular O–H···O hydrogen bonds and weak π-π interactions play a critical role in expanding the dimensionality.


1986 ◽  
Vol 51 (11) ◽  
pp. 2521-2527 ◽  
Author(s):  
Jan Lokaj ◽  
Eleonóra Kellö ◽  
Viktor Kettmann ◽  
Viktor Vrábel ◽  
Vladimír Rattay

The crystal and molecular structure of SnBu2(pmdtc)2 has been solved by X-ray diffraction methods and refined by a block-diagonal least-squares procedure to R = 0.083 for 895 observed reflections. Monoclinic, space group C2, a = 19.893(6), b = 7.773(8), c = 12.947(8) . 10-10 m, β = 129.07(5)°, Z = 2, C20H38N2S4Sn. Measured and calculated densities are Dm = 1.38(2), Dc = 1.36 Mg m-3. Sn atom, placed on the twofold axes, is coordinated with four S atoms in the distances Sn-S 2.966(6) and 2.476(3) . 10-10 m. Coordination polyhedron is a strongly distorted octahedron. Ligand S2CN is planar.


1997 ◽  
Vol 52 (2) ◽  
pp. 256-258 ◽  
Author(s):  
Evgeni V. Avtomonov ◽  
Rainer Grüning ◽  
Jörg Lorberth

Abstract The crystal structure of the title compound has been determined by X-ray diffraction methods. Due to the Lewis acidic character of the iodine substituent a “zig-zag” chain is formed via intermolecular interactions (2.933(4) A) between iodine and oxygen atoms of theocarbamate moiety. A three-dimensional network is formed through hydrogen-bridging (2.04 A) between NH-groups and the oxygen atoms of the neighbouring carbamate group of the next molecule.


1989 ◽  
Vol 44 (2) ◽  
pp. 169-174 ◽  
Author(s):  
Bruno Lunelli ◽  
Magda Monari

Abstract The crystal and molecular structure of the dithallium salt of the 1,2-dicyanim inocyclobuten-3,4-dione dianion and of 1,2-diiodocyclobuten-3,4-dione, determined by X-ray diffraction, are reported and discussed. Results of FT-IR and calorimetric measurements are also presented.


1989 ◽  
Vol 44 (1) ◽  
pp. 5-8
Author(s):  
Michel Mégnamisi-Bélombé

Abstract trans-Dichloro(ethanedial-dioximato)(ethanediaI-dioxime)rhodium (III), RhCl2(GH)(GH2), has been synthesized and its structure determined by single crystal X-ray diffraction at room temperature. C4H7Cl2N4O4Rh, Mr = 348.94. monoclinic space group P21/ɑ; a = 10.543(3), b = 8.363(2), c = 11.512(3)Å ; β = 92.79(2)°; V = 1024Å3; Z = 4; Dc = 2.26 Mg m-3. Final Rw = 0.075 for 2035 reflections and 139 parameters. The coordination geometry around Rh is a dis­torted (4+2) octahedron, with four chelating N atoms lying in the equatorial plane and the two Cl atoms in the apical positions. The H atoms of the oxime groups are involved in relatively weak intramolecular O-H-O bridgings, as well as in very strong intermolecular bridgings which extend throughout the crystal structure and propagate nearly parallel to the [101] crystallographic direction.


Sign in / Sign up

Export Citation Format

Share Document