2014 ◽  
Vol 6 ◽  
pp. 140-149 ◽  
Author(s):  
Vishal Gupta ◽  
P.M. Pandey ◽  
Mohinder Pal Garg ◽  
Rajesh Khanna ◽  
N.K. Batra

Author(s):  
Fatma B Gumus ◽  
Ferhat Ceritbinmez ◽  
Ahmet Yapici

The aim of this work is to investigate the effect of the hexagonal nano boron nitride (h-BN) doped epoxy on the mechanical performances and machinability behaviors of basalt fiber (BF) composites. The h-BN has used as a dopant with a weight rate of 1 wt. %. The polymer composites were prepared by the vacuum bagging method and specimens were processed with abrasive water jet machining (AWJM) to analyze the machinability of the material. A circular hole with an 8 mm size was machined by abrasive water jet (AWJ) on the composite plate with a thickness of 2.3 ± 0.1 mm using the garnet size of 80 µm as an abrasive. Taper angle and circularity of machined hole, the entry-exit hole diameter, delamination, splintering, burring, thickness, and hardness were measured. Results indicate that cutting speed has a high influence on the taper angle and circularity respectively.


2020 ◽  
Vol 70 (3) ◽  
pp. 313-322
Author(s):  
Dinesh Singh ◽  
Rajkamal S. Shukla

Abrasive water jet machining (AWJM) has found its application in the manufacturing industries for machining hard materials with precision. A degree of high precision in machining of complex geometries makes AWJM valuable. The selection of optimum process parameters is important to the resulting quality of machined parts. In this study, an experimental investigation was conducted to evaluate the machinability of Inconel 600. A response surface methodology (RSM) is used to determine the influence of the AWJM process parameters on the considered performance characteristics, i.e., kerf top width (KTW) and taper angle. The analysis of variance is performed to obtain the contribution and influence of each process parameter on the considered responses. The value of R-Squared obtained for KTW and taper angle using regression model is 0.97 and 0.96 respectively. The optimum setting of the parameters for single and multiple response characteristics are obtained using the desirability analysis of RSM. The results obtained using desirability analysis of RSM is validated by conducting the confirmation experiments. The experimental confirmatory values obtained for the considered performance parameters KTW and taper angle as 27.138 and 0.125 respectively. The corresponding value of error obtained as 0.383 and 0.013 respectively. Further, an optimum set is obtained with KTW as 27.461 mm and taper angle as 0.582° for multiple response optimisation.


2017 ◽  
Vol 5 (3) ◽  
pp. 319-328 ◽  
Author(s):  
Padmakar J. Pawar ◽  
Umesh S. Vidhate ◽  
Mangesh Y. Khalkar

Abstract Although abrasive water jet machining has proved its capabilities for cutting marble material in a most economic and environment friendly manner, is facing serious issues related to dimensional inaccuracy and striation marks. This has put limit on its applications. Also, due to complex nature of abrasive water jet machining process, it is very difficult to control all three quality factors i.e. kerf taper, kerf width, striation marks simultaneously to achieve desired quality. This work therefore deals with multi-objective optimization considering three objectives as: minimization of kerf width, minimization of kerf taper, and maximization of depth of striation free surface in abrasive water jet machining process. The response surface modeling is used to establish the relation between various input parameters such as stand of distance, traverse speed, water pressure, and abrasive flow rate, with objectives mentioned above. Application of well-known meta-heuristics named artificial bee colony algorithm is extended to multi-objective optimization with posteriori approach by incorporating the concept of non-dominated sorting. Set of Pareto optimal solutions obtained by this proposed approach provides a ready reference for selecting most appropriate parameter setting on the machine with respect to objectives considered in this work. Highlights Provides methodology to concurrently minimize the dimensional inaccuracy along with striation marks for cutting marble material with abrasive water jet machining process. Application of artificial bee colony algorithm is extended to multi-objective optimization. The set of Pareto-optimal solution obtained using proposed approach can be used as a ready reference by the process engineers for cutting marble material by AWJM process.


2017 ◽  
Vol 51 (24) ◽  
pp. 3373-3390 ◽  
Author(s):  
Ajit Dhanawade ◽  
Shailendra Kumar

The present article focuses on mechanism of delamination and kerf geometry in abrasive water jet machining of carbon epoxy composite. In the present study, four process parameters of abrasive water jet machining namely hydraulic pressure, traverse rate, stand-off distance, and abrasive mass flow rate are considered. The experiments are performed on the basis of response surface methodology as a statistical design of experiment approach. Delamination in machined samples is observed by using scanning electron microscope. Analysis of variance is performed in order to investigate the influence of process parameters on delamination, kerf taper ratio, and kerf top width. It is found that delamination decreases with increase in pressure and abrasive mass flow rate and decrease in stand-off distance and traverse rate. Kerf taper ratio decreases with increase in pressure and decrease in traverse rate and stand-off distance. Kerf top width decreases with decrease in stand-off distance and increase in traverse rate. Based on analysis, mathematical models are developed to predict the maximum delamination length, kerf taper ratio, and kerf top width. Further, a multi-response optimization is performed on the basis of desirability function to minimize delamination, kerf taper ratio, and kerf top width.


Sign in / Sign up

Export Citation Format

Share Document