scholarly journals Influence of type and amount of organic matters on the iron sorption of acid mine drainage onto reclaimed-mining soils

2021 ◽  
Vol 8 (4) ◽  
pp. 2985-2994
Author(s):  
Akhmad Rizalli Saidy ◽  
Bambang Joko Priatmadi ◽  
Meldia Septiana

Mining activity may potentially produce acid mine drainage (AMD), which has relatively high acidity and dissolved heavy metal concentrations. Constructed wetlands is one of the AMD management methods in which organic matter (OM) plays a very important function in reducing the concentration of heavy metals in AMD through absorption and precipitation processes. Three types of OM (empty fruit bunches of oil palm, chicken manure and water hyacinth) and five levels of OM (0, 10, 20, 30 and 40 Mg ha-1) were applied to reclaimed-mining soils (RMS) in an incubation study. A batch experiment was then performed to measure the effect of OM application on the maximum sorption capacity (Qmax) of iron (Fe) from the AMD onto the mixed soil-OM. The application of OM resulted in increases in soil pH, carboxylic groups, and total functional groups, in which these increases varied based on the types and amounts of OM application. This study also revealed that OM application resulted in increasing Fe sorption. The application of OM increased Qmax values from 2077 to 2348-3259 mg kg-1 (water hyacinth), to 2607-3635 mg kg-1 (chicken manure), and to 2219-2992 mg kg-1 (empty fruit bunches of oil palm). Increasing these Qmax values may ascribe to increasing functional groups of the RMS with OM application. The results prove the importance of OM in controlling the sorption of Fe from AMD onto soils.

2012 ◽  
Vol 12 (2) ◽  
pp. 167
Author(s):  
Ali Munawar ◽  
Riwandi Riwandi

Organic substrate is an important component of biological treatments for acid mine drainage (AMD) remediation systems. It provides organic substrates to sulfate-reducing bacteria (SRB) in the sulfate (SO4) reduction, resulting in increased alkalinity and metal sulfide precipitates. Natural organic matters vary in their characteristics, and therefore may perform differently for remediation properties. This study was aimed to characterize four locally available organic wastes (bark, empty fruit bunch, sawdust, and chicken manure) potential for AMD remediation. Their chemical properties and elemental compositions were measured. An anaerobic incubation of these wastes in AMD was undertaken to determine their remediation properties. The pH, electrical conductivity (EC), redox potential (Eh), and dissolved Fe and SO4 of the mixtures were measured after the 1st, 7th, 14th, and 30th day of the incubation at room temperature. The results demonstrated that organic wastes varied in their chemical properties and performed differently in treating AMD. Organic wastes containing high alkalinity (high pH) and nutrient concentrations (chicken manure and empty fruit bunch) improved AMD quality through increasing pH (>6) and reducing dissolved Fe and SO4 concentrations. Although sawdust and bark (high CEC) did not increase pH up to acceptable standard at most time, they apparently were able to remove dissolved Fe from AMD through adsorption mechanism.


2018 ◽  
Vol 8 (17) ◽  
pp. 14-19 ◽  
Author(s):  
Chandimal Randunu Palihakkara ◽  
Sandun Dassanayake ◽  
Chulantha Jayawardena ◽  
Indishe Prabath Senanayake

Background. Acid mine drainage (AMD) is a major environmental impact associated with the mining industry. Elevated acidic conditions resulting from the discharge of AMD into the surrounding environment can cause heavy metals to dissolve and transport through water streams and accumulate in the aquatic environment, posing a risk to the health of living organisms. There have been several novel approaches in the remediation of AMD involving passive treatment techniques. The constructed treatment wetland approach is a passive remediation option that has proven to be a cost effective and long-lasting solution in abating toxic pollutant concentrations. Objectives. The present study investigates the applicability of water hyacinth (Eichhornia crassipes), a tropical aquatic plant with reported heavy metal hyper-accumulation in microcosm floating wetland treatment systems designed to remediate AMD with copper (Cu) and cadmium (Cd) concentrations exceeding threshold limits. Methods. Twelve water hyacinth samples were prepared with varying concentrations of Cu (1 mg/L, 2 mg/L, 4 mg/L) and Cd (0.005 mg/L, 0.01 mg/L, 0.02 mg/L). Water samples of 5 ml each were collected from each sample at 24-hour intervals for analysis with an atomic absorption spectrometer. Results. Plant growth varied according to Cu and Cd concentrations and no plants survived for more than 14 days. There was a significant discrepancy in the rate at which the Cd concentrations abated. The rate of reduction was rapid for higher concentrations and after 24 hours a substantial reduction was achieved. There was a reduction in Cu concentration after the first 24-hour period, and after the next 24-hour period the concentrations were again elevated in the samples at initial concentrations of 2 mg/L and A4 mg/L. 4 mg/L Cu concentration was shown to be toxic to the plants, as they had low accumulations and rapid dying was evident. Conclusions. Water hyacinth has the capability to reduce both Cu and Cd concentrations, except at an initial concentration of 4 mg/L of Cu, which was toxic to the plants. Competing Interests. The authors declare no competing financial interests.


2017 ◽  
Author(s):  
D. Kirk Nordstrom ◽  
◽  
Charles N. Alpers ◽  
Kate M. Campbell

Sign in / Sign up

Export Citation Format

Share Document