scholarly journals Chemical characteristics of organic wastes and their potential use for acid mine drainage remediation

2012 ◽  
Vol 12 (2) ◽  
pp. 167
Author(s):  
Ali Munawar ◽  
Riwandi Riwandi

Organic substrate is an important component of biological treatments for acid mine drainage (AMD) remediation systems. It provides organic substrates to sulfate-reducing bacteria (SRB) in the sulfate (SO4) reduction, resulting in increased alkalinity and metal sulfide precipitates. Natural organic matters vary in their characteristics, and therefore may perform differently for remediation properties. This study was aimed to characterize four locally available organic wastes (bark, empty fruit bunch, sawdust, and chicken manure) potential for AMD remediation. Their chemical properties and elemental compositions were measured. An anaerobic incubation of these wastes in AMD was undertaken to determine their remediation properties. The pH, electrical conductivity (EC), redox potential (Eh), and dissolved Fe and SO4 of the mixtures were measured after the 1st, 7th, 14th, and 30th day of the incubation at room temperature. The results demonstrated that organic wastes varied in their chemical properties and performed differently in treating AMD. Organic wastes containing high alkalinity (high pH) and nutrient concentrations (chicken manure and empty fruit bunch) improved AMD quality through increasing pH (>6) and reducing dissolved Fe and SO4 concentrations. Although sawdust and bark (high CEC) did not increase pH up to acceptable standard at most time, they apparently were able to remove dissolved Fe from AMD through adsorption mechanism.

2021 ◽  
Vol 8 (4) ◽  
pp. 2985-2994
Author(s):  
Akhmad Rizalli Saidy ◽  
Bambang Joko Priatmadi ◽  
Meldia Septiana

Mining activity may potentially produce acid mine drainage (AMD), which has relatively high acidity and dissolved heavy metal concentrations. Constructed wetlands is one of the AMD management methods in which organic matter (OM) plays a very important function in reducing the concentration of heavy metals in AMD through absorption and precipitation processes. Three types of OM (empty fruit bunches of oil palm, chicken manure and water hyacinth) and five levels of OM (0, 10, 20, 30 and 40 Mg ha-1) were applied to reclaimed-mining soils (RMS) in an incubation study. A batch experiment was then performed to measure the effect of OM application on the maximum sorption capacity (Qmax) of iron (Fe) from the AMD onto the mixed soil-OM. The application of OM resulted in increases in soil pH, carboxylic groups, and total functional groups, in which these increases varied based on the types and amounts of OM application. This study also revealed that OM application resulted in increasing Fe sorption. The application of OM increased Qmax values from 2077 to 2348-3259 mg kg-1 (water hyacinth), to 2607-3635 mg kg-1 (chicken manure), and to 2219-2992 mg kg-1 (empty fruit bunches of oil palm). Increasing these Qmax values may ascribe to increasing functional groups of the RMS with OM application. The results prove the importance of OM in controlling the sorption of Fe from AMD onto soils.


2018 ◽  
Vol 78 (8) ◽  
pp. 1715-1725 ◽  
Author(s):  
N. Pérez ◽  
A. Schwarz ◽  
J. de Bruijn

Abstract The performance of passive biochemical reactors in acid mine drainage (AMD) treatment could be enhanced by using fine organic substrates in new reactor designs, such as diffusive exchange reactors. This work evaluated the effect of fine cellulosic components in organic mixtures and of enrichment with inoculum, on sulfate and metals removal in discontinuous cultures for three types of synthetic AMD. The cellulosic substrates evaluated were sawdust, microcrystalline cellulose, and forestry cellulose fibers, supplemented with cow manure and leaf compost. Using microcrystalline cellulose and forestry cellulose fibers with the less concentrated AMD, high sulfate reduction rates (73 mg/L-d and 58.2 mg/L-d, respectively) were achieved. Correspondingly, iron concentrations were reduced by 69% and 86.6%. Based on their higher sulfate reducing capacity, cellulose fibers obtained as fiber boards from a local kraft pulp mill were selected for treating a synthetic AMD with a high copper concentration (273 mg/L) and pH 4.94. In batch culture, low sulfate reducing activity (13.10 mg/L-d) was only observed at the highest substrate/AMD ratio (0.5:10) tested. Results show that the use of forestry cellulose fibers in reactive mixtures supplemented with inoculum could be an alternative for optimization of diffusive exchange reactors for AMD treatment.


2020 ◽  
Vol 10 (11) ◽  
pp. 3985 ◽  
Author(s):  
Min-Suk Kim ◽  
Hyun-Gi Min ◽  
Jeong-Gyu Kim

Indiscriminate overuse of liquid fertilizer and arsenic (As) contaminated soil by abandoned mines is one of the important environmental issues in Korea. This study was carried out to solve these two problems. Amendments (limestone, red mud and acid mine drainage sludge), liquid fertilizer and plant vegetation (Hairy vetch; Vicia villosa Roth) were simultaneously treated. Some soil chemical properties (pH, dissolved organic carbon, inorganic nitrogen content, and bioavailable As), soil respiration and enzyme activity (urease activity and dehydrogenase activity) were determined for chemical and biological assessment. Amendments decreased bioavailable As in soil, and acid mine drainage sludge had the best reduction efficiency in alkali soil. Liquid fertilizer affects not only soil chemical properties but also biological properties. Through multiple regression analysis, the rhizosphere effect through plant cultivation using specific root length index was reflected in the result of soil microbial and enzyme activity. In the reclamation of As-contaminated soil, the synergistic effect of multiple treatments could be confirmed. In particular, biological assessment indicators could be useful when evaluating the complex treatment of various restoration techniques, including the phytoremediation method. Based on these results, a long-term follow-up study on the field scale will be possible.


2004 ◽  
Vol 38 (19) ◽  
pp. 4186-4196 ◽  
Author(s):  
Oriol Gibert ◽  
Joan de Pablo ◽  
José Luis Cortina ◽  
Carlos Ayora

Sign in / Sign up

Export Citation Format

Share Document