scholarly journals Effects of Land Use on the Amount and Composition of Dissolved Organic Matter in a Chinese Headwater Stream Watershed

2016 ◽  
Vol 25 (1) ◽  
pp. 385-394 ◽  
Author(s):  
Bingbing Xu ◽  
Qinghui Huang ◽  
Jianhua Li ◽  
Penghui Li ◽  
Yuanjing Xiang ◽  
...  
Author(s):  
Liuqing Zhang ◽  
Xiaohua Zhu ◽  
Xing Huang ◽  
Chaorong Liu ◽  
Yan Yang

Abstract Chromophoric dissolved organic matter (CDOM) in aquatic ecosystems can reflect the impacts of human activities on the carbon-cycling process. However, direct evidence of the combined effect of land use and anthropogenic nutrients on CDOM characteristics in river ecosystems is limited. Herein, we collected water samples from 18 sites in the Nanchong section of Jialing River in December 2019 to elucidate how the land use and nutrients affect the source and composition of CDOM through parallel factor (PARAFAC) analysis of excitation–emission matrices (EEMs). First, the absorption coefficient a254 (r2=0.29, p<0.01) and three fluorescence components (humic-like C1 and C2 and protein-like C3) (r2=0.31–0.37, p<0.01) significantly increased with increased urban area, and the four parameters were higher in the urban than in the suburb (p<0.05). The correlation between small CDOM molecule and cropland land was positive (p<0.01). Second, the increase in nutrient levels increased the a254 (r2=0.84 and 0.33, p<0.01) and three fluorescence components (r2=0.30–0.84, p<0.01 or p<0.05). Third, allochthonous CDOM were prevalent in the Nanchong Section of Jialing River, and the proportions of C1 and C2 were 42 and 41%, respectively. Our findings indicated that the variability of source and composition of CDOM significantly depended on urbanization and increased nutrients in the Nanchong Section of Jialing River.


Author(s):  
Kelsey Watts

Soils play a critical role to society as a medium that facilitates crop production and also contributes to the energy and carbon balance of the Earth System. Land-use change and improper land-use is one of the dominant factors affecting soil erosion and nutrient loss in soils. We examined the effects of land-use change on an Elmbrook clay/clay-loam soil on a farm in Ameliasburg on the northern part of Prince Edward County. Three cover types were examined: a sod field (established for over 10 years), a wheat field (part of a wheat/corn/soybean rotation for 30 years) and an undisturbed deciduous forest. Under each land-use type, cores to a depth of 40 cm were collected along three random 30 m transects (at 8, 16 and 24 m), then divided them into 10 cm increments, combining all similar depth increments along one transect. Soil quality was assessed by analyzing various soil physical and chemical properties. Bulk density of the soil was much higher (1.55 vs. 0.95 g/cm3) in both agricultural ecosystems compared to the forest, but only in the 0-10 cm layer. Soil moisture at 60% water holding capacity was much greater for the forest than the sod and wheat soils. Soil pH was slightly lower in the forest compared to the sod and wheat fields. The sod and wheat fields showed losses of ~52% and ~53% organic matter, respectively, in contrast to the forested area. The greatest differences in organic matter and total carbon were found in the top 10 cm, likely due to the greater accumulation of litter at the ground surface in the forest compared to the agricultural sites. It appears that long-term (10 year) agricultural production has led to a decline in some, but not all, soil quality measures, particularly soil organic matter, bulk density and water holding capacity. These findings are consistent with much of the literature concerning the effects of land-use change on soil quality, and highlight the need to develop improved management systems to minimize losses in soil quality that can lead to declines in the productivity potential of soils over time.


2018 ◽  
Vol 147 ◽  
pp. 1065-1072 ◽  
Author(s):  
Long-Ji Zhu ◽  
Yue Zhao ◽  
Yan-Ni Chen ◽  
Hong-Yang Cui ◽  
Yu-Quan Wei ◽  
...  

Silicon ◽  
2020 ◽  
Author(s):  
Barbara von der Lühe ◽  
Laura Pauli ◽  
Britta Greenshields ◽  
Harold J. Hughes ◽  
Aiyen Tjoa ◽  
...  

Abstract The effects of land use and fire on ecosystem silicon (Si) cycling has been largely disregarded so far. We investigated the impacts of land use and fire on Si release from topsoils and litter of lowland rainforest and oil-palm plantations in Jambi Province, Indonesia. Lower concentrations of Si in amorphous silica (ASi) were found in oil-palm plantation topsoils (2.8 ± 0.7 mg g− 1) compared to rainforest (3.5 ± 0.8 mg g− 1). Higher total Si concentrations were detected in litter from oil-palm frond piles (22.8 ± 4.6 mg g− 1) compared to rainforest litter (12.7 ± 2.2 mg g− 1). To test the impact of fire, materials were burned at 300 °C and 500 °C and were shaken with untreated samples in simulated rainwater for 28 h. Untreated oil-palm topsoils showed a significantly lower Si release (p≤ 0.05) compared to rainforest. The fire treatments resulted in an increased Si release into simulated rainwater. Si release from oil-palm topsoils and litter increased by a factor of 6 and 9 (500 °C), respectively, and Si release from rainforest topsoils and litter by a factor of 3 and 9 (500 °C). Differences between land use were related to initial ASi and litter Si concentrations, and to losses of soil organic matter during burning. We conclude that transformation of rainforest into oil palm plantations could be an important and immediate Si source after a fire event but may indirectly lead to a decrease in the long-term Si availability to plants.


Sign in / Sign up

Export Citation Format

Share Document