Exploring Maximum Power Point by Population-Based Optimization Algorithms

2014 ◽  
Vol 1 ◽  
pp. 618-621
Author(s):  
Masaya MURAOKA ◽  
Noriaki MIKAMI ◽  
Toshimichi SAITO
Energies ◽  
2021 ◽  
Vol 14 (2) ◽  
pp. 335
Author(s):  
Kostas Bavarinos ◽  
Anastasios Dounis ◽  
Panagiotis Kofinas

In this paper, two universal reinforcement learning methods are considered to solve the problem of maximum power point tracking for photovoltaics. Both methods exhibit fast achievement of the MPP under varying environmental conditions and are applicable in different PV systems. The only required knowledge of the PV system are the open-circuit voltage, the short-circuit current and the maximum power, all under STC, which are always provided by the manufacturer. Both methods are compared to a Fuzzy Logic Controller and the universality of the proposed methods is highlighted. After the implementation and the validation of proper performance of both methods, two evolutionary optimization algorithms (Big Bang—Big Crunch and Genetic Algorithm) are applied. The results demonstrate that both methods achieve higher energy production and in both methods the time for tracking the MPP is reduced, after the application of both evolutionary algorithms.


2021 ◽  
Vol 13 (21) ◽  
pp. 11650
Author(s):  
Hegazy Rezk ◽  
Mohammed Mazen Alhato ◽  
Mujahed Al-Dhaifallah ◽  
Soufiene Bouallègue

Thermoelectric generators (TEGs) are equipment for transforming thermal power into electricity via the Seebeck effect. These modules have gained increasing interest in research fields related to sustainable energy. The harvested energy is mostly reliant on the differential temperature between the hot and cold areas of the TEGs. Hence, a reliable maximum power point tracker is necessary to operate TEGs too close to their maximum power point (MPP) under an operational and climate variation. In this paper, an optimized fractional incremental resistance tracker (OF-INRT) is suggested to enhance the output performance of a TEG. The introduced tracker is based on the fractional-order PIλDμ control concepts. The optimal parameters of the OF-INRT are determined using a population-based sine cosine algorithm (SCA). To confirm the optimality of the introduced SCA, experiments were conducted and the results compared with those of particle swarm optimization- (PSO) and whale optimization algorithm (WOA) -based techniques. The key goal of the suggested OF-INRT is to overcome the two main issues in conventional trackers, i.e., the slow dynamics of traditional incremental resistance trackers (INRT) and the high steady-state fluctuation around the MPP in the prevalent perturb and observe trackers (POTs). The main findings prove the superiority of the OF-INRT in comparison with the INRT and POT, for both dynamic and steady-state responses.


Mathematics ◽  
2019 ◽  
Vol 7 (10) ◽  
pp. 875 ◽  
Author(s):  
Rezk ◽  
Ali ◽  
Abdalla ◽  
Younis ◽  
Gomaa ◽  
...  

For an efficient energy harvesting by the PV/thermoelectric system, the maximum power point tracking (MPPT) principle is targeted, aiming to operate the system close to peak power point. Under a uniform distribution of the solar irradiance, there is only one maximum power point (MPP), which easily can be efficiently determined by any traditional MPPT method, such as the incremental conductance (INC). A different situation will occur for the non-uniform distribution of solar irradiance, where more than one MPP will exist on the power versus voltage plot of the PV/thermoelectric system. The determination of the global MPP cannot be achieved by conventional methods. To deal with this issue the application of soft computing techniques based on optimization algorithms is used. However, MPPT based on optimization algorithms is very tedious and time consuming, especially under normal conditions. To solve this dilemma, this research examines a hybrid MPPT method, consisting of an incremental conductance (INC) approach and a moth-flame optimizer (MFO), referred to as (INC-MFO) procedure, to reach high adaptability at different environmental conditions. In this way, the combination of the two different algorithms facilitates the utilization of the advantages of the two methods, thereby resulting in a faster speed tracking with uniform radiation distribution and a high accuracy in the case of a non-uniform distribution. It is very important to mention that the INC method is used to track the maximum power point under normal conditions, whereas the MFO optimizer is most relevant for the global search under partial shading. The obtained results revealed that the proposed strategy performed best in both of the dynamic and the steady-state conditions at uniform and non-uniform radiation.


2015 ◽  
Vol 135 (12) ◽  
pp. 1463-1469
Author(s):  
Atsushi Nakata ◽  
Akihiro Torii ◽  
Jun Ishikawa ◽  
Suguru Mototani ◽  
Kae Doki ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document