Microbial Community-Level Physiological Profiling as an Inquiry Laboratory Exercise

2016 ◽  
Vol 78 (9) ◽  
pp. 776-779
Author(s):  
Pamela A. Marshall

In this inquiry activity, community-level physiological profiling (CLPP) with EcoPlates is described to quantitatively depict the community of microorganisms situated in a natural environment. Students can develop their own hypotheses and carry out experimentation about the makeup of microbial communities using EcoPlates. There are many independent variables that can be assessed or changed to determine how environmental differences can play important roles in the types of microorganisms that are found in an environment.

2005 ◽  
Vol 68 (1) ◽  
pp. 40-48 ◽  
Author(s):  
ANABELLE MATOS ◽  
JAY L. GARLAND

Potential biological control inoculants, Pseudomonas fluorescens 2-79 and microbial communities derived from market sprouts or laboratory-grown alfalfa sprouts, were introduced into alfalfa seeds with and without a Salmonella inoculum. We examined their ability to inhibit the growth of this foodborne pathogen and assess the relative effects of the inoculants on the alfalfa microbial community structure and function. Alfalfa seeds contaminated with a Salmonella cocktail were soaked for 2 h in bacterial suspensions from each inoculant tested. Inoculated alfalfa seeds were grown for 7 days and sampled during days 1, 3, and 7. At each sampling, alfalfa sprouts were sonicated for 7 min to recover microflora from the surface, and the resulting suspensions were diluted and plated on selective and nonselective media. Total bacterial counts were obtained using acridine orange staining, and the percentage culturability was calculated. Phenotypic potential of sprout-associated microbial communities inoculated with biocontrol treatments was assessed using community-level physiological profiles based on patterns of use of 95 separate carbon sources in Biolog plates. Community-level physiological profiles were also determined using oxygen-sensitive fluorophore in BD microtiter plates to examine functional patterns in these communities. No significant differences in total and mesophilic aerobe microbial cell density or microbial richness resulting from the introduction of inoculants on alfalfa seeds with and without Salmonella were observed. P. fluorescens 2-79 exhibited the greatest reduction in the growth of Salmonella early during alfalfa growth (4.22 log at day 1), while the market sprout inoculum had the reverse effect, resulting in a maximum log reduction (5.48) of Salmonella on day 7. Community-level physiological profiles analyses revealed that market sprout communities peaked higher and faster compared with the other inoculants tested. These results suggest that different modes of actions of single versus microbial consortia biocontrol treatments may be involved.


2020 ◽  
Vol 8 (12) ◽  
pp. 1860
Author(s):  
Mariusz Cycoń ◽  
Anna Markowicz ◽  
Tomasz J. Wąsik ◽  
Zofia Piotrowska-Seget

Erythromycin (EM), a macrolide antibiotic, by influencing the biodiversity of microorganisms, might change the catabolic activity of the entire soil microbial community. Hence, the goal of this study was to determine the metabolic biodiversity in soil treated with EM (1 and 10 mg/kg soil) using the community-level physiological profiling (CLPP) method during a 90-day experiment. In addition, the effect of soil inoculation with antibiotic-resistant Raoultella sp. strain MC3 on CLPP was evaluated. The resistance and resilience concept as well as multifactorial analysis of data was exploited to interpret the outcomes obtained. EM negatively affected the metabolic microbial activity, as indicated by the values of the CLPP indices, i.e., microbial activity expressed as the average well-color development (AWCD), substrate richness (R), the Shannon–Wiener (H) and evenness (E) indices and the AWCD values for the six groups of carbon substrate present in EcoPlates until 15 days. The introduction of strain MC3 into soil increased the degradative activity of soil microorganisms in comparison with non-inoculated control. In contrast, at the consecutive sampling days, an increase in the values of the CLPP parameters was observed, especially for EM-10 + MC3-treated soil. Considering the average values of the resistance index for all of the measurement days, the resistance of the CLPP indices and the AWCD values for carbon substrate groups were categorized as follows: E > H > R > AWCD and polymers > amino acids > carbohydrates > miscellaneous > amines > carboxylic acids. The obtained results suggest a low level of resistance of soil microorganisms to EM and/or strain MC3 at the beginning of the exposure time, but the microbial community exhibited the ability to recover its initial decrease in catabolic activity over the experimental period. Despite the short-term effects, the balance of the soil ecosystem may be disturbed.


2021 ◽  
Vol 10 (2) ◽  
Author(s):  
Juraj Faragó ◽  
Natália Faragová

Since 1996, when the first genetically modified seeds were planted in field conditions, the commercial growing of genetically modified crops increased to over 134 millions of hectares in 2009 worldwide. Along with the great potential of transgenic plants for future agriculture, considerable concerns on their biosafety have been raised, including their potential impact on soil microbial communities. This review briefly summarizes the important features of soil microorganisms for plant health and ecosystem stability, the numerous methods available for microbial ecologists to study soil microbial diversity, with emphasis on the method of community level physiological profiling (CLPP) based on carbon substrate utilization patterning, and finally the use of CLPP for assessing the effects of transgenic crops on soil microbial communities.


2019 ◽  
Author(s):  
Renee Johansen ◽  
Michaeline Albright ◽  
Deanna Lopez ◽  
La Verne Gallegos-Graves ◽  
Andreas Runde ◽  
...  

AbstractDuring plant litter decomposition in soils, carbon has two general fates: return to the atmosphere via microbial respiration or transport into soil where long-term storage may occur. Discovering microbial community features that drive carbon fate from litter decomposition may improve modeling and management of soil carbon. This concept assumes there are features (or underlying processes) that are widespread among disparate communities, and therefore amenable to modeling. We tested this assumption using an epidemiological approach in which two contrasting patterns of carbon flow in laboratory microcosms were delineated as functional states and diverse microbial communities representing each state were compared to discover shared features linked to carbon fate. Microbial communities from 206 soil samples from the southwestern United States were inoculated on plant litter in microcosms, and carbon flow was measured as cumulative carbon dioxide (CO2) and dissolved organic carbon (DOC) after 44 days. Carbon flow varied widely among the microcosms, with a 2-fold range in cumulative CO2efflux and a 5-fold range in DOC quantity. Bacteria, not fungi, were the strongest drivers of DOC variation. The most significant community-level feature linked to DOC abundance was bacterial richness—the same feature linked to carbon fate in human-gut microbiome studies. This proof-of-principle study under controlled conditions suggests common features driving carbon flow in disparate microbial communities can be identified, motivating further exploration of underlying mechanisms that may influence carbon fate in natural ecosystems.


Sign in / Sign up

Export Citation Format

Share Document