scholarly journals Sniffle: a step forward to measure in situ CO2 fluxes with the floating chamber technique

Elem Sci Anth ◽  
2018 ◽  
Vol 6 ◽  
Author(s):  
M. Ribas-Ribas ◽  
L. F. Kilcher ◽  
O. Wurl

Understanding how the ocean absorbs anthropogenic CO2 is critical for predicting climate change. We designed Sniffle, a new autonomous drifting buoy with a floating chamber, to measure gas transfer velocities and air–sea CO2 fluxes with high spatiotemporal resolution. Currently, insufficient in situ data exist to verify gas transfer parameterizations at low wind speeds (<4 m s–1), which leads to underestimation of gas transfer velocities and, therefore, of air–sea CO2 fluxes. The Sniffle is equipped with a sensor to consecutively measure aqueous and atmospheric pCO2 and to monitor increases or decreases of CO2 inside the chamber. During autonomous operation, a complete cycle lasts 40 minutes, with a new cycle initiated after flushing the chamber. The Sniffle can be deployed for up to 15 hours at wind speeds up to 10 m s–1. Floating chambers often overestimate fluxes because they create additional turbulence at the water surface. We correct fluxes by measuring turbulence with two acoustic Doppler velocimeters, one positioned directly under the floating chamber and the other positioned sideways, to compare artificial disturbance caused by the chamber and natural turbulence. The first results of deployment in the North Sea during the summer of 2016 demonstrate that the new drifting buoy is a useful tool that can improve our understanding of gas transfer velocity with in situ measurements. At low and moderate wind speeds and different conditions, the results obtained indicate that the observed tidal basin was acting as a source of atmospheric CO2. Wind speed and turbulence alone could not fully explain the variance in gas transfer velocity. We suggest that other factors like surfactants, rain or tidal current will have an impact on gas transfer parameterizations.

Geosciences ◽  
2019 ◽  
Vol 9 (5) ◽  
pp. 230
Author(s):  
Mariana Ribas-Ribas ◽  
Gianna Battaglia ◽  
Matthew P. Humphreys ◽  
Oliver Wurl

Carbon dioxide (CO2) fluxes between the ocean and atmosphere (FCO2) are commonly computed from differences between their partial pressures of CO2 (ΔpCO2) and the gas transfer velocity (k). Commonly used wind-based parameterizations for k imply a zero intercept, although in situ field data below 4 m s−1 are scarce. Considering a global average wind speed over the ocean of 6.6 m s−1, a nonzero intercept might have a significant impact on global FCO2. Here, we present a database of 245 in situ measurements of k obtained with the floating chamber technique (Sniffle), 190 of which have wind speeds lower than 4 m s−1. A quadratic parameterization with wind speed and a nonzero intercept resulted in the best fit for k. We further tested FCO2 calculated with a different parameterization with a complementary pCO2 observation-based product. Furthermore, we ran a simulation in a well-tested ocean model of intermediate complexity to test the implications of different gas transfer velocity parameterizations for the natural carbon cycle. The global ocean observation-based analysis suggests that ignoring a nonzero intercept results in an ocean-sink increase of 0.73 Gt C yr−1. This corresponds to a 28% higher uptake of CO2 compared with the flux calculated from a parameterization with a nonzero intercept. The differences in FCO2 were higher in the case of low wind conditions and large ΔpCO2 between the ocean and atmosphere. Such conditions occur frequently in the Tropics.


2014 ◽  
Vol 14 (21) ◽  
pp. 28453-28482
Author(s):  
T. G. Bell ◽  
W. De Bruyn ◽  
C. A. Marandino ◽  
S. D. Miller ◽  
C. S. Law ◽  
...  

Abstract. Air/sea dimethylsulfide (DMS) fluxes and bulk air/sea gradients were measured over the Southern Ocean in February/March 2012 during the Surface Ocean Aerosol Production (SOAP) study. The cruise encountered three distinct phytoplankton bloom regions, consisting of two blooms with moderate DMS levels, and a high biomass, dinoflagellate-dominated bloom with high seawater DMS levels (>15 nM). Gas transfer coefficients were considerably scattered at wind speeds above 5 m s−1. Bin averaging the data resulted in a linear relationship between wind speed and mean gas transfer velocity consistent with that previously observed. However, the wind speed-binned gas transfer data distribution at all wind speeds is positively skewed. The flux and seawater DMS distributions were also positively skewed, which suggests that eddy covariance-derived gas transfer velocities are consistently influenced by additional, log-normal noise. A~flux footprint analysis was conducted during a transect into the prevailing wind and through elevated DMS levels in the dinoflagellate bloom. Accounting for the temporal/spatial separation between flux and seawater concentration significantly reduces the scatter in computed transfer velocity. The SOAP gas transfer velocity data shows no obvious modification of the gas transfer-wind speed relationship by biological activity or waves. This study highlights the challenges associated with eddy covariance gas transfer measurements in biologically active and heterogeneous bloom environments.


2021 ◽  
Author(s):  
Pascal Perolo ◽  
Bieito Fernández Castro ◽  
Nicolas Escoffier ◽  
Thibault Lambert ◽  
Damien Bouffard ◽  
...  

Abstract. The gas transfer velocity (k) is a major source of uncertainty when assessing the magnitude of lake gas exchange with the atmosphere. For the diversity of existing empirical and process-based k models, the transfer velocity increases with the level of turbulence near the air-water interface. However, predictions for k can vary by a factor of 2 among different models. Near-surface turbulence results from the action of wind shear, surface waves and buoyancy-driven convection. Wind shear has long been identified as a key driver, while recent lake studies have shifted the focus towards the role of convection, particularly in small lakes. In large lakes, wind fetch can however be long enough to generate surface waves and contribute to enhance gas transfer, as widely recognised in oceanographic studies. Here, field values for gas transfer velocity were computed in a large hardwater lake, Lake Geneva, from CO2 fluxes measured with an automated (forced diffusion) flux chamber and CO2 partial pressure measured with high frequency sensors. k estimates were compared to a set of reference limnological and oceanic k models. Our analysis reveals that accounting for surface waves generated during windy events significantly improves the accuracy of k estimates in this large lake. The improved k model is then used to compute k over a one-year time-period. Results show that episodic extreme events with surface waves (6 % occurrence, significant wave height > 0.4 m) can generate more than 20 % of annual cumulative k and more than 25 % of annual net CO2 fluxes in Lake Geneva. We conclude that for lakes whose fetch can exceed 15 km, k-models need to integrate the effect of surface waves.


2009 ◽  
Vol 6 (6) ◽  
pp. 1105-1114 ◽  
Author(s):  
M. Ll. Calleja ◽  
C. M. Duarte ◽  
Y. T. Prairie ◽  
S. Agustí ◽  
G. J. Herndl

Abstract. Air-sea CO2 exchange depends on the air-sea CO2 gradient and the gas transfer velocity (k), computed as a function of wind speed. Large discrepancies among relationships predicting k from wind suggest that other processes also contribute significantly to modulate CO2 exchange. Here we report, on the basis of the relationship between the measured gas transfer velocity and the organic carbon concentration at the ocean surface, a significant role of surface organic matter in suppressing air-sea gas exchange, at low and intermediate winds, in the open ocean, confirming previous observations. The potential role of total surface organic matter concentration (TOC) on gas transfer velocity (k) was evaluated by direct measurements of air-sea CO2 fluxes at different wind speeds and locations in the open ocean. According to the results obtained, high surface organic matter contents may lead to lower air-sea CO2 fluxes, for a given air-sea CO2 partial pressure gradient and wind speed below 5 m s−1, compared to that observed at low organic matter contents. We found the bias in calculated gas fluxes resulting from neglecting TOC to co-vary geographically and seasonally with marine productivity. These results support previous evidences that consideration of the role of organic matter in modulating air-sea CO2 exchange may improve flux estimates and help avoid possible bias associated to variability in surface organic concentration across the ocean.


2019 ◽  
Vol 16 (5) ◽  
pp. 961-978 ◽  
Author(s):  
Mingxi Yang ◽  
Thomas G. Bell ◽  
Ian J. Brown ◽  
James R. Fishwick ◽  
Vassilis Kitidis ◽  
...  

Abstract. Air–water CH4 and CO2 fluxes were directly measured using the eddy covariance technique at the Penlee Point Atmospheric Observatory on the southwest coast of the United Kingdom from September 2015 to August 2016. The high-frequency, year-long measurements provide unprecedented detail on the variability of these greenhouse gas fluxes from seasonal to diurnal and to semi-diurnal (tidal) timescales. Depending on the wind sector, fluxes measured at this site are indicative of air–water exchange in coastal seas as well as in an outer estuary. For the open-water sector when winds were off the Atlantic Ocean, CH4 flux was almost always positive (annual mean of ∼0.05 mmol m−2 d−1) except in December and January, when CH4 flux was near zero. At times of high rainfall and river flow rate, CH4 emission from the estuarine-influenced Plymouth Sound sector was several times higher than emission from the open-water sector. The implied CH4 saturation (derived from the measured fluxes and a wind-speed-dependent gas transfer velocity parameterization) of over 1000 % in the Plymouth Sound is within range of in situ dissolved CH4 measurements near the mouth of the river Tamar. CO2 flux from the open-water sector was generally from sea to air in autumn and winter and from air to sea in late spring and summer, with an annual mean flux of near zero. A diurnal signal in CO2 flux and implied partial pressure of CO2 in water (pCO2) are clearly observed for the Plymouth Sound sector and also evident for the open-water sector during biologically productive periods. These observations suggest that coastal CO2 efflux may be underestimated if sampling strategies are limited to daytime only. Combining the flux data with seawater pCO2 measurements made in situ within the flux footprint allows us to estimate the CO2 transfer velocity. The gas transfer velocity and wind speed relationship at this coastal location agrees reasonably well with previous open-water parameterizations in the mean but demonstrates considerable variability. We discuss the influences of biological productivity, bottom-driven turbulence and rainfall on coastal air–water gas exchange.


2021 ◽  
Vol 12 (4) ◽  
pp. 1169-1189
Author(s):  
Pascal Perolo ◽  
Bieito Fernández Castro ◽  
Nicolas Escoffier ◽  
Thibault Lambert ◽  
Damien Bouffard ◽  
...  

Abstract. The gas transfer velocity (k) is a major source of uncertainty when assessing the magnitude of lake gas exchange with the atmosphere. For the diversity of existing empirical and process-based k models, the transfer velocity increases with the level of turbulence near the air–water interface. However, predictions for k can vary by a factor of 2 among different models. Near-surface turbulence results from the action of wind shear, surface waves, and buoyancy-driven convection. Wind shear has long been identified as a key driver, but recent lake studies have shifted the focus towards the role of convection, particularly in small lakes. In large lakes, wind fetch can, however, be long enough to generate surface waves and contribute to enhance gas transfer, as widely recognised in oceanographic studies. Here, field values for gas transfer velocity were computed in a large hard-water lake, Lake Geneva, from CO2 fluxes measured with an automated (forced diffusion) flux chamber and CO2 partial pressure measured with high-frequency sensors. k estimates were compared to a set of reference limnological and oceanic k models. Our analysis reveals that accounting for surface waves generated during windy events significantly improves the accuracy of k estimates in this large lake. The improved k model is then used to compute k over a 1-year time period. Results show that episodic extreme events with surface waves (6 % occurrence, significant wave height > 0.4 m) can generate more than 20 % of annual cumulative k and more than 25 % of annual net CO2 fluxes in Lake Geneva. We conclude that for lakes whose fetch can exceed 15 km, k models need to integrate the effect of surface waves.


2015 ◽  
Vol 15 (4) ◽  
pp. 1783-1794 ◽  
Author(s):  
T. G. Bell ◽  
W. De Bruyn ◽  
C. A. Marandino ◽  
S. D. Miller ◽  
C. S. Law ◽  
...  

Abstract. Air–sea dimethylsulfide (DMS) fluxes and bulk air–sea gradients were measured over the Southern Ocean in February–March 2012 during the Surface Ocean Aerosol Production (SOAP) study. The cruise encountered three distinct phytoplankton bloom regions, consisting of two blooms with moderate DMS levels, and a high biomass, dinoflagellate-dominated bloom with high seawater DMS levels (> 15 nM). Gas transfer coefficients were considerably scattered at wind speeds above 5 m s−1. Bin averaging the data resulted in a linear relationship between wind speed and mean gas transfer velocity consistent with that previously observed. However, the wind-speed-binned gas transfer data distribution at all wind speeds is positively skewed. The flux and seawater DMS distributions were also positively skewed, which suggests that eddy covariance-derived gas transfer velocities are consistently influenced by additional, log-normal noise. A flux footprint analysis was conducted during a transect into the prevailing wind and through elevated DMS levels in the dinoflagellate bloom. Accounting for the temporal/spatial separation between flux and seawater concentration significantly reduces the scatter in computed transfer velocity. The SOAP gas transfer velocity data show no obvious modification of the gas transfer–wind speed relationship by biological activity or waves. This study highlights the challenges associated with eddy covariance gas transfer measurements in biologically active and heterogeneous bloom environments.


2018 ◽  
Author(s):  
Mingxi Yang ◽  
Thomas G. Bell ◽  
Ian J. Brown ◽  
James R. Fishwick ◽  
Vassilis Kitidis ◽  
...  

Abstract. Air-water CH4 and CO2 fluxes were directly measured using the eddy covariance technique at the Penlee Point Atmospheric Observatory on the southwest coast of the United Kingdom from September 2015 to August 2016. The high frequency, year-long measurements provide unprecedented detail into the variability of these Greenhouse Gas fluxes from seasonal to diurnal and to semi-diurnal timescales. Depending on the wind sector, fluxes measured at this site are indicative of air-water exchange in coastal seas as well as in an outer estuary. For the open water sector when winds were off the Atlantic Ocean, annual CH4 emission averaged ~ 0.05 mmol m−2 d−1. Open water CH4 flux was near zero in December and January, probably due to reduced biological production of CH4. At times of high rainfall and river flow rate, CH4 emission from the estuarine-influenced Plymouth Sound sector was several times higher than emission from the open water sector. The implied CH4 saturation, derived from the measured fluxes and a wind speed dependent gas transfer velocity parameterization, of over 1000 % in the Plymouth Sound is within range of in situ dissolved CH4 measurements near the mouth of the river Tamar. CO2 flux from the open water sector was generally from sea-to-air in autumn and winter and from air-to-sea in late spring and summer, with an annual mean flux of near zero. CO2 flux from the Plymouth Sound sector was more positive, consistent with a higher dissolved CO2 concentration in the estuarine waters. A diurnal signal in CO2 flux and implied dissolved pCO2 are clearly observed for the Plymouth Sound sector and also evident for the open water sector during biologically productive periods. These observations suggest that coastal CO2 efflux may be underestimated if the sampling strategy is limited to daytime only. Combining the fluxes with in situ dissolved pCO2 measurements within the flux footprints allows us to estimate the CO2 transfer velocity. The gas transfer velocity vs. wind speed relationship at this coastal location agrees reasonably well with previous open water parameterizations in the mean, but demonstrates considerable variability. We discuss the influences of biological productivity and bottom-driven turbulence on coastal air-water gas exchange.


Sign in / Sign up

Export Citation Format

Share Document