History Beneath the Surface: Natural Gas Pipelines and the National Historic Preservation Act

2004 ◽  
Vol 26 (1) ◽  
pp. 105-122 ◽  
Author(s):  
Christopher Castaneda

This article is a case study of how natural gas pipelines have been treated under the National Historic Preservation Act (NHPA). It examines three recent pipeline projects that involved determinations of eligibility for the National Register of Historic Places. In one case, a pipeline firm sought an exemption from Section 106 review, and this led to a proposed congressional amendment to the NHPA. In order to forestall a legislative amendment, the Advisory Council on Historic Preservation issued an administrative exemption from Section 106 review for natural gas pipelines. This essay traces the process and events that led to this exemption.

Author(s):  
Amir Ahmadipur ◽  
Alexander McKenzie-Johnson ◽  
Ali Ebrahimi ◽  
Anthony H. Rice

Abstract This paper presents a case study of a landslide with the potential to affect four operating high-pressure natural gas pipelines located in the south-central US state of Mississippi. This case study follows a landslide hazard management process: beginning with landslide identification, through pipeline monitoring using strain gauges with an automated early alert system, to detection of landslide movement and its effects on the pipeline, completion of a geotechnical subsurface investigation, conceptual geotechnical mitigation planning, landslide stabilization design and construction, and stress relief excavation. Each step of the landslide hazard management process is described in this case study.


2013 ◽  
Vol 58 (1) ◽  
pp. 131-144
Author(s):  
Andrzej Osiadacz

This work presents a transient, non-isothermal compressible gas flow model that is combined with a hydrate phase equilibrium model. It enables, to determine whether hydrates could form under existing operating conditions in natural gas pipelines. In particular, to determine the time and location at which the natural gas enters the hydrate formation region. The gas flow is described by a set of partial differential equations resulting from the conservation of mass, momentum, and energy. Real gas effects are determined by the predictive Soave-Redlich-Kwong group contribution method. By means of statistical mechanics, the hydrate model is formulated combined with classical thermodynamics of phase equilibria for systems that contain water and both hydrate forming and non-hydrate forming gases as function of pressure, temperature, and gas composition. To demonstrate the applicability a case study is conducted.


Author(s):  
Toby Fore ◽  
Stefan Klein ◽  
Chris Yoxall ◽  
Stan Cone

Managing the threat of Stress Corrosion Cracking (SCC) in natural gas pipelines continues to be an area of focus for many operating companies with potentially susceptible pipelines. This paper describes the validation process of the high-resolution Electro-Magnetic Acoustical Transducer (EMAT) In-Line Inspection (ILI) technology for detection of SCC prior to scheduled pressure tests of inspected line pipe valve sections. The validation of the EMAT technology covered the application of high-resolution EMAT ILI and determining the Probability Of Detection (POD) and Identification (POI). The ILI verification process is in accordance to a API 1163 Level 3 validation. It is described in detail for 30″ and 36″ pipeline segments. Both segments are known to have an SCC history. Correlation of EMAT ILI calls to manual non-destructive measurements and destructively tested SCC samples lead to a comprehensive understanding of the capabilities of the EMAT technology and the associated process for managing the SCC threat. Based on the data gathered, the dimensional tool tolerances in terms of length and depth are derived.


Sign in / Sign up

Export Citation Format

Share Document