scholarly journals THE SUBSTANTIATION OF THE PARAMETERS OF THE ROTARY-FILM CONTACTOR FOR EXTRACORPOREAL PROCESSING OF LARGE VOLUMES OF BLOOD USING OZONE

2017 ◽  
Vol 1 (51) ◽  
pp. 92-100
Author(s):  
T.A. Glukhenkaya ◽  
◽  
V.V. Egorov ◽  
N.O. Kanischeva ◽  
E.I. Nazarov ◽  
...  
Keyword(s):  
1960 ◽  
Vol 37 (5) ◽  
pp. 247
Author(s):  
Edward M. Arnett
Keyword(s):  

2021 ◽  
pp. 15-21
Author(s):  
Valeriy Mykhailov ◽  
Andrii Zahorulko ◽  
Aleksey Zagorulko ◽  
Bogdan Liashenko ◽  
Svеtlana Dudnyk

A method for the production of multicomponent fruit and vegetable paste has been developed. All components were selected considering the content of physiologically functional ingredients. The method is distinguished using the developed innovative equipment: a multifunctional apparatus for the implementation of preliminary heat treatment of raw materials; rotary film evaporator for concentrating puree. The developed devices are distinguished by increased resource efficiency due to heating with a low-temperature film electric heater with a temperature regime in the range of 45-70 °C. The study of structural and mechanical parameters and organoleptic evaluation of the prototypes allowed to reveal the rational content of raw materials in the developed paste: apples – 30%; viburnum – 20%; black chokeberry – 20%; pumpkins – 20%, beets – 10%.


2021 ◽  
Vol 4 (3(60)) ◽  
pp. 42-45
Author(s):  
Aleksey Zagorulko ◽  
Andrii Zahorulko ◽  
Maksym Serik ◽  
Vyacheslav Оnishchenko ◽  
Alexander Postadzhiev

The object of research is the process of concentrating fruit and vegetable purees in an improved rotary film evaporator. The existing hardware design of traditional processes for processing fruits and vegetables, as a rule, is not unified enough, inconvenient in operation and is designed for high productivity. Concentration of fruit and vegetable purees occurs mainly in vacuum evaporators of periodic and continuous operation at a temperature of 60–80 °C under vacuum, which allows them to significantly preserve their nutritional value. But the duration of the process remains very significant (in devices of periodic action up to 75–90 minutes). One of the most problematic areas in the concentration of fruit and vegetable raw materials is significant losses of biologically active substances. At the same time, an important indicator of the quality of the process of concentrating pasty fruit and vegetable pastes is the value of the heat transfer coefficient, which characterizes the efficiency of the heat transfer method and the design features of the mixing device, taking into account the thermophysical characteristics of the product. To create conditions for conducting research to determine the heat transfer coefficient, it is necessary to use instrumentation with precise regulation of the necessary technological parameters. To study the heat transfer coefficient when concentrating fruit and vegetable purees, an automatic installation of an improved rotary evaporator was designed. The improvement of the rotary film evaporator (RFE) is carried out due to the lower location of the separating space by installing a screw discharge of the paste and preheating the output puree with secondary steam. The experimental dependences of the heat transfer coefficient on the product flow rate make it possible to determine the rational values of the flow rate of the RFE feedstock at various values of the rotor shaft speed. It is found that the heat transfer coefficient is influenced to a large extent by the product consumption, and the rotor speed acts to a lesser extent, only the relative speed of fluid passage around the developed hinged blade changes. It is found that when the frequency changes from 0.3 to 1.7 s–1, an increase in the heat transfer coefficient by 1.45 times is observed, which is explained by a more intensive degree of mixing of the product by the blades.


1978 ◽  
Vol 12 (9) ◽  
pp. 1227-1231
Author(s):  
O. A. Krechetova ◽  
Yu. G. Lakeev ◽  
L. P. Losev ◽  
G. V. Mel'nikova
Keyword(s):  

2019 ◽  
Vol 6 (3(50)) ◽  
pp. 28-30
Author(s):  
Aleksey Zagorulko ◽  
Andreii Zahorulko ◽  
Bogdan Liashenko ◽  
Iryna Gordienko

Sign in / Sign up

Export Citation Format

Share Document