scholarly journals Multi-pass friction stirred clad welding of dissimilar joined AA6061 aluminium alloy and brass

2018 ◽  
Vol 12 (4) ◽  
pp. 4285-4299
Author(s):  
Nora Osman ◽  
Zainuddin Sajuri ◽  
Mohd Zaidi Omar

Tool steels are commonly used to cut metal materials due to their distinctive hardness, resistance to abrasion and deformation. However, tool steels are difficult to be joined using conventional fusion welding process. In this study, a thixotropic property of metal was utilised to butt-join an AISI D2 tool steel by using uncommon direct partial re-melting (DPRM) method. A high frequency of induction heating is used to apply the DPRM method. From the recent study, there are many methods in achieving the globular microstructure with the success of semi-solid joining process. Though, very less information on the microstructural effect of semi-solid joining on the mechanical properties was reported. This study aims to analyse the effect of uniaxial force on the microstructural evolution and mechanical properties of the thixo-joint of D2 tool steel. The microstructural analysis showed the diffusion occurred between the grains of the thixo-joint sample with 2.5 N uniaxial force. The maximum strength of the thixo-joint sample with force was 652 MPa. This was slightly higher than the as-received sample and the thixo-joint sample without force. The average hardness value of the thixo-joint sample was 400 HV due to the transformation of ferrite to the metastable austenite.

2019 ◽  
Vol 13 (2) ◽  
pp. 5006-5020 ◽  
Author(s):  
F. Adnan ◽  
Z. Sajuri ◽  
M. Z. Omar

Tool steels are commonly used to cut metal materials due to their distinctive hardness, resistance to abrasion and deformation. However, tool steels are difficult to be joined using conventional fusion welding process. In this study, a thixotropic property of metal was utilised to butt-join an AISI D2 tool steel by using uncommon direct partial re-melting (DPRM) method. A high frequency of induction heating is used to apply the DPRM method. From the recent study, there are many methods in achieving the globular microstructure with the success of semi-solid joining process. Though, very less information on the microstructural effect of semi-solid joining on the mechanical properties was reported. This study aims to analyse the effect of uniaxial force on the microstructural evolution and mechanical properties of the thixo-joint of D2 tool steel. The microstructural analysis showed the diffusion occurred between the grains of the thixo-joint sample with 2.5 N uniaxial force. The maximum strength of the thixo-joint sample with force was 652 MPa. This was slightly higher than the as-received sample and the thixo-joint sample without force. The average hardness value of the thixo-joint sample was 400 HV due to the transformation of ferrite to the metastable austenite.


2014 ◽  
Vol 699 ◽  
pp. 76-80 ◽  
Author(s):  
M.N. Mohammed ◽  
M.Z. Omar ◽  
J. Syarif ◽  
Z. Sajuri ◽  
M.S. Salleh ◽  
...  

Due to the growing demand for cold-work tool steel in various industrial applications, it is crucial to improve the fabrication technique, because complex shapes involve an extensive and costly workshop effort. Hence, a one-step net-shaping process, such as the semi-solid forming, could offer great benefits. With the aim of finding a minimum process chain for the manufacturing of a high-quality production, the microstructural evolution of the ledeburitic AISI D2 tool steel in the semi-solid-state was studied experimentally via the Direct Partial Re-Melting Method (DPRM). Samples were heated in an argon atmosphere up to 1255°C, which corresponded to about 16% of liquid fraction, and held for 0 minute. The microstructural observation after DPRM showed that the equiaxed austenite grains are observable within a small liquid matrix. The microstructure also contains primary, non-dissolved carbides with a new, precipitated eutectic.


Metals ◽  
2019 ◽  
Vol 9 (11) ◽  
pp. 1169 ◽  
Author(s):  
Mohammed Algarni

This research analyzes the mechanical properties and fracture behavior of two cold work tool steels: AISI “D2” and “O1”. Tool steels are an economical and efficient solution for manufacturers due to their superior mechanical properties. Demand for tool steels is increasing yearly due to the growth in transportation production around the world. Nevertheless, AISI “D2” and “O1” (locally made) tool steels behave differently due to the varying content of their alloying elements. There is also a lack of information regarding their mechanical properties and behavior. Therefore, this study aimed to investigate the plasticity and ductile fracture behavior of “D2” and “O1” via several experimental tests. The tool steels’ behavior under monotonic quasi-static tensile and compression tests was analyzed. The results of the experimental work showed different plasticity behavior and ductile fracture among the two tool steels. Before fracture, clear necking appeared on “O1” tool steel, whereas no signs of necking occurred on “D2” tool steel. In addition, the fracture surface of “O1” tool steel showed cup–cone fracture mode, and “D2” tool steel showed a flat surface fracture mode. The dimple-like structures in scanning electron microscope (SEM) images revealed that both tool steels had a ductile fracture mode.


Metals ◽  
2018 ◽  
Vol 8 (5) ◽  
pp. 316 ◽  
Author(s):  
M. Mohammed ◽  
M. Omar ◽  
Salah Al-Zubaidi ◽  
K. Alhawari ◽  
M. Abdelgnei

2012 ◽  
Vol 735 ◽  
pp. 422-426 ◽  
Author(s):  
Toru Nagaoka ◽  
Hiroyuki Watanabe ◽  
Masao Fukusumi ◽  
Yusuke Kitamura ◽  
Tadashi Mizuno ◽  
...  

Modification of AISI D2 tool steel was conducted by friction stir processing (FSP). Effects of tool rotational speed on microstructural evolution and mechanical properties were investigated. Though coarse primary carbides in the size of 10-50 m were observed before FSP, fine carbides smaller than 20 m and martensitic matrix with fine grains were obtained after FSP. High hardness of over 900 HV, higher than the hardness in conventional D2 tool steel, was achieved under the condition of moderate rotational speed.


Sign in / Sign up

Export Citation Format

Share Document