scholarly journals Three-Dimensional Distribution of Ryanodine Receptor Clusters in Cardiac Myocytes

2006 ◽  
Vol 91 (1) ◽  
pp. 1-13 ◽  
Author(s):  
Ye Chen-Izu ◽  
Stacey L. McCulle ◽  
Chris W. Ward ◽  
Christian Soeller ◽  
Bryan M. Allen ◽  
...  
2008 ◽  
Vol 17 ◽  
pp. S232
Author(s):  
David Crossman ◽  
Christian Soeller ◽  
Peter Ruygrok ◽  
Mark Cannell

2015 ◽  
Vol 108 (2) ◽  
pp. 262a
Author(s):  
Alex Vallmitjana ◽  
Florian Hiess ◽  
S.R. Wayne Chen ◽  
Leif Hove-Madsen ◽  
Raul Benitez

2007 ◽  
Vol 104 (38) ◽  
pp. 14958-14963 ◽  
Author(s):  
C. Soeller ◽  
D. Crossman ◽  
R. Gilbert ◽  
M. B. Cannell

2015 ◽  
Vol 80 ◽  
pp. 45-55 ◽  
Author(s):  
Yufeng Hou ◽  
Isuru Jayasinghe ◽  
David J. Crossman ◽  
David Baddeley ◽  
Christian Soeller

2021 ◽  
Author(s):  
Thomas M. D. Sheard ◽  
Miriam E. Hurley ◽  
Andrew J Smith ◽  
John Colyer ◽  
Ed White ◽  
...  

Clusters of ryanodine receptor calcium channels (RyRs) form the primary molecular machinery in cardiomyocytes. Various adaptations of super-resolution microscopy have revealed intricate details of the structure, molecular composition and locations of these couplons. However, most optical super-resolution techniques lack the capacity for three-dimensional (3D) visualisation. Enhanced Expansion Microscopy (EExM) offers resolution (in-plane and axially) sufficient to spatially resolve individual proteins within peripheral couplons and within dyads located in the interior. We have combined immunocytochemistry and immunohistochemistry variations of EExM with 3D visualisation to examine the complex topologies, geometries and molecular sub-domains within RyR clusters. We observed that peripheral couplons exhibit variable co-clustering ratios and patterns between RyR and the structural protein, junctophilin-2 (JPH2). Dyads possessed sub-domains of JPH2 which occupied the central regions of the RyR cluster, whilst the poles were typically devoid of JPH2 and broader, and likely specialise in turnover and remodelling of the cluster. In right ventricular myocytes from rats with monocrotaline-induced right ventricular failure, we observed hallmarks of RyR cluster fragmentation accompanied by similar fragmentations of the JPH2 sub-domains. We hypothesise that the frayed morphology of RyRs in close proximity to fragmented JPH2 structural sub-domains may form the primordial foci of RyR mobilisation and dyad remodelling.


2007 ◽  
Vol 93 (7) ◽  
pp. 2504-2518 ◽  
Author(s):  
Pauline Dan ◽  
Eric Lin ◽  
Jingbo Huang ◽  
Perveen Biln ◽  
Glen F. Tibbits

Author(s):  
Jane K. Rosenthal ◽  
Dianne L. Atkins ◽  
William J. Marvin ◽  
Penny A. Krumm

To comprehend structural changes in cardiac myocytes accompanying adrenergic innervation, it is essential that a three dimensional analysis be performed. To date, biological studies which utilize stereological methods have been limited to cells in tissue and in organs. Our laboratory has utilized current stereological techniques for measuring absolute volumes of individual myocytes in primary culture. Cell volumes are calculated for two distinct groups of cells at 96 hours in culture: isolated myocytes and myocytes innervated with adrenergic neurons (Figure 1).Cardiac myocytes are cultured from the ventricular apices of newborn rats. Cells are plated directly onto tissue culture dishes with or without preplated explants from the paravertebral thoracolumbar sympathetic chain. On day four cultures are photographed and marked for one-to-one cell location. Following conventional fixation and embeddment in eponate-12, the cells are relocated and mounted for microtomy. The cells are completely sectioned at 120nm in their parallel orientation to the surface of the dish (Figure 2). Serial sections are collected on formvar coated slotted grids and are recorded in sequence.


Author(s):  
Tomoko Ehara ◽  
Shuji Sumida ◽  
Tetsuaki Osafune ◽  
Eiji Hase

As shown previously, Euglena cells grown in Hutner’s medium in the dark without agitation accumulate wax as well as paramylum, and contain proplastids showing no internal structure except for a single prothylakoid existing close to the envelope. When the cells are transferred to an inorganic medium containing ammonium salt and the cell suspension is aerated in the dark, the wax was oxidatively metabolized, providing carbon materials and energy 23 for some dark processes of plastid development. Under these conditions, pyrenoid-like structures (called “pro-pyrenoids”) are formed at the sites adjacent to the prolamel larbodies (PLB) localized in the peripheral region of the proplastid. The single prothylakoid becomes paired with a newly formed prothylakoid, and a part of the paired prothylakoids is extended, with foldings, in to the “propyrenoid”. In this study, we observed a concentration of RuBisCO in the “propyrenoid” of Euglena gracilis strain Z using immunoelectron microscopy.


Sign in / Sign up

Export Citation Format

Share Document