scholarly journals Otomatisasi Sistem Fertigasi Tetes untuk Tanaman Berbasis Mikrokontroler

2021 ◽  
Vol 13 (1) ◽  
pp. 34-41
Author(s):  
Iswadi Hasyim Rosma ◽  
Dian Yayan Sukma ◽  
Ikhram Minata Solihin

The process of manual fertilization and irrigation of plants has disadvantages such as it requires human labor and is inefficient in the use of fertilizers and water sources. Therefore, the purpose of this research is to design and develop an automatic fertigation system. The method used in this research is a drip fertigation technique where the fertigation liquid that has been stirred is placed in a tank with 100 cm height from ground. With the gravitational force, the fertigation liquid is distributed through pipes, hoses and emitters around the plant. While the control system and automation of fertigation distribution to plants is carried out based on a microcontroller that need the condition of soil moisture values around the plant. If the watering time and humidity values are met, the electronic valve will open so that the fertigation liquid flows from the tank to the plants. Furthermore, in this study the tests were carried out to determine the uniformity coefficient and debit of drip fertigation. From the results, it shows that the emitter’s debit influenced by the liquid level in the tank. The uniformity coefficient obtained in the two tests is greater than 90%. From the two tests carried out from the moisture sensor 1 and 2, it shows the mean percentage error for both sensor is less than 1.7%, while the percentage error of soil moisture sensor 1 is 1.6% and the percentage error of soil moisture sensor 2 is 1%, respectively. Meanwhile, from the ultrasonic sensor testing it was obtained 0% of error. It also shows from the testing conducted that the fertigation system works very well and successfully.

2019 ◽  
Vol 125 ◽  
pp. 23002
Author(s):  
Dedy Rahman Prehanto ◽  
Aries Dwi Indriyanti ◽  
Chamdan Mashuri ◽  
Ginanjar Setyo Permadi

This research conducted by predicting soil moisture using Fuzzy Time Series (FTS) and soil moisture sensor technology on shallot farming. Well-controlled soil moisture affects the shallots and crops growth. It discusses soil moisture prediction and monitoring systems developed through Android-based mobile programming languages. Input data consists of sensor results obtained from automatic, online, and real-time acquisition using soil moisture sensor technology, then, sent to the server and stored in an online database. Furthermore, data acquisition is predicted using the FTS algorithm that applies a discourse universe to define and determine fuzzy sets. Fuzzy set results are continued to the process of sharing the discourse universe so that it becomes the final step. Prediction results are displayed on the information system dashboard developed. Using 24 data from soil moisture data, the predicted score is 760 at the beginning of 6:00. The results of the prediction are done by validating error deviations using the Mean Square Error of 1.5%. This proves that FTS is good enough in predicting soil moisture and safety to control soil moisture in shallots. For deeper analysis, researchers used various request data and U discourse universe at FTS to obtain various results based on the test data used.


2019 ◽  
Vol 5 (1) ◽  
pp. 97-106
Author(s):  
Rudi Budi Agung ◽  
Muhammad Nur ◽  
Didi Sukayadi

The Indonesian country which is famous for its tropical climate has now experienced a shift in two seasons (dry season and rainy season). This has an impact on cropping and harvesting systems among farmers. In large scale this is very influential considering that farmers in Indonesia are stilldependent on rainfall which results in soil moisture. Some types of plants that are very dependent on soil moisture will greatly require rainfall or water for growth and development. Through this research, researchers tried to make a prototype application for watering plants using ATMEGA328 microcontroller based soil moisture sensor. Development of application systems using the prototype method as a simple method which is the first step and can be developed again for large scale. The working principle of this prototype is simply that when soil moisture reaches a certainthreshold (above 56%) then the system will work by activating the watering system, if it is below 56% the system does not work or in other words soil moisture is considered sufficient for certain plant needs.


2021 ◽  
Vol 733 (1) ◽  
pp. 012025
Author(s):  
Murti Marinah ◽  
Nadhifa Aqilla Husna ◽  
Hafiz Salam ◽  
Agus Muhamad Hatta

Author(s):  
K. Akanksha

Nowadays gardening has become a hobby for everyone. Everyone is showing interest in growing their own plants in their houses like terrace farming. So we have decided to do a project which can be useful for everyone even the farmers can be benefitted by our project. In our project we are preparing a greenhouse for cultivating different kinds of crops. Our greenhouse consists of arduino UNO, sensors like (temperature sensor, soil moisture sensor, colour sensor and light sensor), actuators. All these are used in sensing the outside environment and giving signals to arduino so that it sends the signal through GSM module and this GSM module will give us a message alert through our mobile phones like for example if the moisture is less in soil then we will get alert “your moisture has decreased water the plants” so that we can turn on our motor pumps to water. Here we are using thingspeak cloud for coding the arduino through IOT. Our project will also do its watering by itself when the moisture level decreases, this is done by soil moisture sensor. It is very reasonable and complete greenhouse can be constructed under Rs.10,000 which can save lots of money for the farmers. The crop yield will also be very good and this will be useful in increasing the economy of farming.


2020 ◽  
Vol 1 (1) ◽  
pp. 23-32
Author(s):  
Sampurna Dadi Riskiono ◽  
Roy Harry Syidiq Pamungkas ◽  
Yudha Arya

Development at this time is increasing, people expect a tool or technology that can help human work, so technology becomes a necessity for humans. This final task is made a device that can do the job of watering tomato plants automatically. This tool aims to replace the manual work becomes automatic. The benefit of this tool is that it can facilitate the work of humans in watering chili plants. This tool uses a soil moisture sensor which acts as a soil moisture detector and sends an order to Arduino Uno to turn on the relay driver so that the wiper motor can splash water according to the needs of the soil automatically. The making of this final project is done by designing, making and implementing system components which include Arduino uno as a controller, driver relay to blow on and off the wiper motor, LCD (Linquit Cristal Display) to display the percentage value of water content


Sign in / Sign up

Export Citation Format

Share Document