PROTOTIPE APLIKASI PENYIRAMAN TANAMAN MENGGUNAKAN SENSOR KELEMBABAN TANAH BERBASIS MICRO CONTOLLER ATMEGA 328

2019 ◽  
Vol 5 (1) ◽  
pp. 97-106
Author(s):  
Rudi Budi Agung ◽  
Muhammad Nur ◽  
Didi Sukayadi

The Indonesian country which is famous for its tropical climate has now experienced a shift in two seasons (dry season and rainy season). This has an impact on cropping and harvesting systems among farmers. In large scale this is very influential considering that farmers in Indonesia are stilldependent on rainfall which results in soil moisture. Some types of plants that are very dependent on soil moisture will greatly require rainfall or water for growth and development. Through this research, researchers tried to make a prototype application for watering plants using ATMEGA328 microcontroller based soil moisture sensor. Development of application systems using the prototype method as a simple method which is the first step and can be developed again for large scale. The working principle of this prototype is simply that when soil moisture reaches a certainthreshold (above 56%) then the system will work by activating the watering system, if it is below 56% the system does not work or in other words soil moisture is considered sufficient for certain plant needs.

2021 ◽  
Vol 733 (1) ◽  
pp. 012025
Author(s):  
Murti Marinah ◽  
Nadhifa Aqilla Husna ◽  
Hafiz Salam ◽  
Agus Muhamad Hatta

2014 ◽  
Vol 38 (3) ◽  
pp. 744-754 ◽  
Author(s):  
Edison Aparecido Mome Filho ◽  
Alvaro Pires da Silva ◽  
Getulio Coutinho Figueiredo ◽  
Fernando Henrique Setti Gimenes ◽  
André Cesar Vitti

Modern agriculture techniques have a great impact on crops and soil quality, especially by the increased machinery traffic and weight. Several devices have been developed for determining soil properties in the field, aimed at managing compacted areas. Penetrometry is a widely used technique; however, there are several types of penetrometers, which have different action modes that can affect the soil resistance measurement. The objective of this study was to compare the functionality of two penetrometry methods (manual and automated mode) in the field identification of compacted, highly mechanized sugarcane areas, considering the influence of soil water volumetric content (θ) on soil penetration resistance (PR). Three sugarcane fields on a Rhodic Eutrudrox were chosen, under a sequence of harvest systems: one manual harvest (1ManH), one mechanized harvest (1MH) and three mechanized harvests (3MH). The different degrees of mechanization were associated to cumulative compaction processes. An electronic penetrometer was used on PR measurements, so that the rod was introduced into the soil by hand (Manual) and by an electromechanical motor (Auto). The θ was measured in the field with a soil moisture sensor. Results showed an effect of θ on PR measurements and that regression models must be used to correct data before comparing harvesting systems. The rod introduction modes resulted in different mean PR values, where the "Manual" overestimated PR compared to the "Auto" mode at low θ.


Author(s):  
K. Akanksha

Nowadays gardening has become a hobby for everyone. Everyone is showing interest in growing their own plants in their houses like terrace farming. So we have decided to do a project which can be useful for everyone even the farmers can be benefitted by our project. In our project we are preparing a greenhouse for cultivating different kinds of crops. Our greenhouse consists of arduino UNO, sensors like (temperature sensor, soil moisture sensor, colour sensor and light sensor), actuators. All these are used in sensing the outside environment and giving signals to arduino so that it sends the signal through GSM module and this GSM module will give us a message alert through our mobile phones like for example if the moisture is less in soil then we will get alert “your moisture has decreased water the plants” so that we can turn on our motor pumps to water. Here we are using thingspeak cloud for coding the arduino through IOT. Our project will also do its watering by itself when the moisture level decreases, this is done by soil moisture sensor. It is very reasonable and complete greenhouse can be constructed under Rs.10,000 which can save lots of money for the farmers. The crop yield will also be very good and this will be useful in increasing the economy of farming.


2020 ◽  
Vol 1 (1) ◽  
pp. 23-32
Author(s):  
Sampurna Dadi Riskiono ◽  
Roy Harry Syidiq Pamungkas ◽  
Yudha Arya

Development at this time is increasing, people expect a tool or technology that can help human work, so technology becomes a necessity for humans. This final task is made a device that can do the job of watering tomato plants automatically. This tool aims to replace the manual work becomes automatic. The benefit of this tool is that it can facilitate the work of humans in watering chili plants. This tool uses a soil moisture sensor which acts as a soil moisture detector and sends an order to Arduino Uno to turn on the relay driver so that the wiper motor can splash water according to the needs of the soil automatically. The making of this final project is done by designing, making and implementing system components which include Arduino uno as a controller, driver relay to blow on and off the wiper motor, LCD (Linquit Cristal Display) to display the percentage value of water content


2020 ◽  
Vol 2 (1) ◽  
Author(s):  
Emilyana Varida ◽  
Arif Supriyanto ◽  
Wiwik Kusrini ◽  
Fathurahmani Fathur

Saat ini para petani sayuran dalam menanam jenis sayuran masih menggunakan cara tradisional dan belum memperhatikan kondisi tanah yang sesuai untuk jenis sayuran yang akan mereka tanam, hal ini menyebabkan pertumbuhan sayuran menjadi kurang maksimal. Oleh karena itu diperlukan sebuah sistem yang mampu memberikan informasi kadar tanah dan memberikan rekomendasi jenis sayuran yang cocok untuk ditanami. Sistem yang akan dibangun berbasis mikrokontorler arduino, sensor soil moisture, sensor pH, dan modul ESP8266 yang digunakan untuk mengirimkan data hasil dari pembacaan sensor ke perangkat mobile secara real-time  untuk diproses dan menghasilkan rekomendasi jenis sayuran yang cocok berdasarkan data hasil dari pembacaan sensor. Berdasarkan hasil pengujian, sistem ini telah mampu menampilkan kondisi kelembaban tanah, kadar pH dengan baik dan mampu merekomendasi jenis sayuran sesuai dengan kondisi hasil pembacaan sensor, sehingga harapannya dapat membantu para petani sayuran dalam menentukan jenis sayuran yang akan mereka tanam dan mampu meminimalisir resiko gagal panen. Kata Kunci: Arduino, soil moisture, pH, mobile web


Sign in / Sign up

Export Citation Format

Share Document