scholarly journals Does the Mediterranean water shrew Neomys anomalus (Soricidae, Eulipotyphla) expand the eastern part of the distribution range?

2020 ◽  
Vol 19 (2) ◽  
pp. 112-130
Author(s):  
O.A. Ermakov ◽  
A.V. Mishta ◽  
B.I. Sheftel ◽  
E.V. Obolenskaya ◽  
G.A. Lada ◽  
...  
1882 ◽  
Vol 11 ◽  
pp. 637-637
Author(s):  
John Aitken

In a letter to Professor Tait, dated Mentone, 14th April 1882, Mr. Aitken says :—Since coming here this time, I have tested the sea with the polariscope and with the spectroscope. With an instrument by Hoffman, which gives coloured bands with polarized light, I have been able to detect small, but decided indications of polarization in the light internally reflected by the water, the surface reflection being, of course, cut off when the observation was made. At present I think the polarization is due to regular reflection from the polished surfaces of some of the particles, which are seen to glance brightly in concentrated sunlight.I have also detected an absorption band in the green of the spectrum of the light internally reflected by the Mediterranean water. This band is much more distinct in water where there are but few reflecting particles, and the light undergoes a great amount of selective absorption.


2009 ◽  
Vol 6 (4) ◽  
pp. 647-662 ◽  
Author(s):  
I. E. Huertas ◽  
A. F. Ríos ◽  
J. García-Lafuente ◽  
A. Makaoui ◽  
S. Rodríguez-Gálvez ◽  
...  

Abstract. The exchange of both anthropogenic and natural inorganic carbon between the Atlantic Ocean and the Mediterranean Sea through Strait of Gibraltar was studied for a period of two years under the frame of the CARBOOCEAN project. A comprehensive sampling program was conducted, which was design to collect samples at eight fixed stations located in the Strait in successive cruises periodically distributed through the year in order to ensure a good spatial and temporal coverage. As a result of this monitoring, a time series namely GIFT (GIbraltar Fixed Time series) has been established, allowing the generation of an extensive data set of the carbon system parameters in the area. Data acquired during the development of nine campaigns were analyzed in this work. Total inorganic carbon concentration (CT) was calculated from alkalinity-pHT pairs and appropriate thermodynamic relationships, with the concentration of anthropogenic carbon (CANT) being also computed using two methods, the ΔC* and the TrOCA approach. Applying a two-layer model of water mass exchange through the Strait and using a value of −0.85 Sv for the average transport of the outflowing Mediterranean water recorded in situ during the considered period, a net export of inorganic carbon from the Mediterranean Sea to the Atlantic was obtained, which amounted to 25±0.6 Tg C yr−1. A net alkalinity output of 16±0.6 Tg C yr−1 was also observed to occur through the Strait. In contrast, the Atlantic water was found to contain a higher concentration of anthropogenic carbon than the Mediterranean water, resulting in a net flux of CANT towards the Mediterranean basin of 4.20±0.04 Tg C yr−1 by using the ΔC* method, which constituted the most adequate approach for this environment. A carbon balance in the Mediterranean was assessed and fluxes through the Strait are discussed in relation to the highly diverse estimates available in the literature for the area and the different approaches considered for CANT estimation. This work unequivocally confirms the relevant role of the Strait of Gibraltar as a controlling point for the biogeochemical exchanges occurring between the Mediterranean Sea and the Atlantic Ocean and emphasizes the influence of the Mediterranean basin in the carbon inventories of the North Atlantic.


2020 ◽  
Author(s):  
Federico Andreetto ◽  
Rachel Flecker ◽  
Marius Stoica

<p>The discovery in the 70’s of the km-thick Mediterranean salt giant alongside the seismic observance of Pliocene-filled engravings along its shelf-slope systems concurred together to postulate that the Mediterranean-Atlantic seaway terminated during the late Messinian. The resulting changes in paleogeographic, paleohydrological and biological conditions, acknowledged as Messinian Salinity Crisis (MSC, 5.97-5.33 Ma), find their expression in the marginal sedimentary record in fauna-depleted gypsum and halite-bearing successions (5.97-5.42 Ma). During the Lago-Mare phase (5.42-5.33) that terminates the MSC the evaporitic deposition endures in the intermediate basins (e.g. Caltanissetta Basin, Sicily), whilst all the marginal basins fill with fluvio-lacustrine terrigenous sediments. Up to five conglomerate to sandstone-laminated pelite alternations thought to be precession controlled are counted underneath the Zanclean marine deposits featuring the restoration of a marine environment. Finer hemicycles tuned to insolation maxima period stand out above all for the occurrence of faunal assemblages consisting of brackish water ostracods, mollusks and dinoflagellate cysts. The affinity of these faunal elements with the coeval inhabitants of the Eastern Paratethys region, fragmented in isolated, long-lived brackish lakes (i.e. Euxinic and Caspian Basin), led to the primordial hypothesis of a similar paleoenvironment in force during the Lago-Mare phase for the Mediterranean, coherent with the paleoenvironment subsisting immediately prior to it. However, the progress of scientific research provided additional evidence arguing against the desiccation theory and supporting a basin filled even during the Lago-Mare phase. Within the full Mediterranean model controversial views exist on the hydrochemistry of the water mass, disputed between marine, brackish and density-stratified. To elucidate Mediterranean base level and hydrology just preceding the restoration of open marine conditions we merge together new and published ostracod biostratigraphic data and radiogenic strontium isotope ratios (<sup>87</sup>Sr/<sup>86</sup>Sr) from locations (SE Spain, Piedmont, Sicily and Cyprus) covering the whole extent of the Mediterranean Basin. Ostracod faunal assemblages share approximately the same species and the same distribution pattern. Within a single pelitic bed, richness varies from oligotypic assemblages dominated by <em>Cyprideis torosa</em> to heterotypic assemblages with up to 17 Black Sea-derived species. Consequently, we conclude that it is most likely that the Mediterranean water level during the final phase of the MSC was high enough to let the Paratethyan fauna to reach and spread throughout the shallow Mediterranean depositional environments. <sup>87</sup>Sr/<sup>86</sup>Sr ratios measured on ostracod valves range between 0.709131-0.708715. The generally lower and higher Sr isotopic composition than contemporary seawater (∼0.709024) alongside the data spreading are considered as a further proof of the presence of multiple lakes acquiring their own isotopic composition. We demonstrate that, when taken individually, none of the marginal basins yields an isotopic signature that matches that of the local rivers. If anything, these <sup>87</sup>Sr/<sup>86</sup>Sr values arise from the mixing of local river water with Mediterranean water and we show that the discrepancies among each basin are consistent with variations in the lithologies of the contributing catchments. Lastly, we show that multiple, isotopically different water sources of both internal (major peri-Mediterranean rivers) and external (Atlantic and Eastern Paratethys) contributed to building up the Mediterranean water mass.</p><p> </p>


2013 ◽  
Vol 94 (1) ◽  
pp. 29-39 ◽  
Author(s):  
Joaquim T. Tapisso ◽  
Maria G. Ramalhinho ◽  
Maria L. Mathias ◽  
Leszek Rychlik

Sign in / Sign up

Export Citation Format

Share Document