diving behavior
Recently Published Documents


TOTAL DOCUMENTS

225
(FIVE YEARS 32)

H-INDEX

37
(FIVE YEARS 2)

2021 ◽  
Author(s):  
Aymeric Fromant ◽  
John P.Y. Arnould ◽  
Karine Delord ◽  
Grace J Sutton ◽  
Alice Carravieri ◽  
...  

Abstract Niche theory predicts that to reduce competition for the same resource, sympatric ecologically similar species should exploit divergent niches and segregate in one or more dimensions. Seasonal variations in environmental conditions and energy requirements can influence the mechanisms and the degree of niche segregation. However, studies have overlooked the multi-dimensional aspect of niche segregation over the whole annual cycle, and key facets of species co-existence still remain ambiguous. The present study provides insights into the niche use and partitioning of two morphologically and ecologically similar seabirds, the common (CDP, Pelecanoides urinatrix) and the South Georgian diving petrels (SGDP, P. georgicus). Using phenology, at-sea distribution, diving behavior and isotopic data (during the incubation, chick-rearing and non-breeding periods), we show that the degree of partitioning was highly stage-dependent. During the breeding season, the greater niche segregation during chick-rearing than incubation supported the hypothesis that resource partitioning increases during energetically demanding periods. During the post breeding period, while the observed species-specific latitudinal differences were expected, CDP and SGDP also migrated in very divergent directions. This may indicate the implication of processes other than inter-species niche competition. Our results demonstrate the importance of integrative approaches combining concepts and techniques from different fields to better understand the co-existence of ecologically similar species. The stage-dependent and context-dependent niche segregation highlights the need for whole-year and multiple-site studies of niche partitioning of sympatric species. This is particularly relevant in order to fully understand the short and long-term effects of ongoing environmental changes on species distributions and communities.


2021 ◽  
Vol 12 ◽  
Author(s):  
Peter Germonpré ◽  
Pierre Lafère ◽  
William Portier ◽  
Faye-Lisa Germonpré ◽  
Alessandro Marroni ◽  
...  

Introduction: Divers with a patent Foramen Ovale (PFO) have an increased risk for decompression sickness (DCS) when diving with compressed breathing gas. The relative risk increase, however, is difficult to establish as the PFO status of divers is usually only determined after a DCS occurrence.Methods: This prospective, single-blinded, observational study was designed to collect DCS data from volunteer divers after screening for right-to-left shunt (RLS) using a Carotid Doppler test. Divers were blinded to the result of the test, but all received a standardized briefing on current scientific knowledge of diving physiology and “low-bubble” diving techniques; they were then allowed to dive without restrictions. After a mean interval of 8 years, a questionnaire was sent collecting data on their dives and cases of DCS (if any occurred).Results: Data was collected on 148 divers totaling 66,859 dives. There was no significant difference in diving data between divers with or without RLS. Divers with RLS had a 3.02 times higher incidence of (confirmed) DCS than divers without RLS (p = 0.04). When all cases of (confirmed or possible DCS) were considered, the Relative Risk was 1.42 (p = 0.46). DCS occurred mainly in divers who did not dive according to “low-bubble” diving techniques, in both groups.Conclusion: This prospective study confirms that DCS is more frequent in divers with RLS (such as a PFO), with a Relative Risk of 1.42 (all DCS) to 3.02 (confirmed DCS). It appears this risk is linked to diving behavior, more specifically diving to the limits of the adopted decompression procedures.


2021 ◽  
Vol 8 ◽  
Author(s):  
Yu Zhang ◽  
Jianzhong Huang ◽  
Xinke Li ◽  
Cuiping Song ◽  
Jingquan Xia ◽  
...  

Human activities beyond ecosystem capacity have resulted in serious effects on corals worldwide. Nowadays, many studies have focused on the influence of diving activities on coral communities, while the knowledge of physiological changes under corresponding environmental stresses remains largely undetermined. In the study, we aimed to investigate the physiological effects of touching, ammonia nitrogen enrichment (5 μmol⋅L–1), and sediment cover (particle size of less than 0.3 mm), which simulated improper self-contained underwater breathing apparatus (SCUBA) diving behaviors, on Acropora hyacinthus and Porites cylindrica in Wuzhizhou Island, the South China Sea. For A. hyacinthus, continuous touching caused the tentacles to shrink and secrete mucus, which consumed energy and dissolved oxygen. The skeletal growth rate was decreased by 72% compared with the control group. There was a rapid decline of Fv/Fm and alpha under the dual impacts of high ammonia nitrogen and touching, while the Chl a concentration and tissue biomass were decreased by 36 and 28% compared with touching alone, respectively. High ammonia nitrogen and touching increased the concentrations of lipid and protein. Nevertheless, zooxanthellae density was increased by 23% to relieve the effects of a lower concentration of Chl a in a high nutrient environment. Constant touching and sediment cover in diving areas with elevated ammonia content affected the photosynthesis and respiration of corals, and a significant decrease was observed for lipid, zooxanthellae density, and Chl a concentration. Coral bleaching occurred on day 7. For P. cylindrica, the decreasing magnitude of Fv/Fm and alpha under different stresses in the subsequent phase was less compared with A. hyacinthus. The contents of carbohydrate and protein under continuous touching were decreased by 7 and 15% compared with the control group, respectively, causing negative growth. Under the dual influences of high ammonia nitrogen and continuous touching, all energy reserves were significantly lower. Repeated touching and sediment cover in diving areas containing high ammonia content increased the concentrations of lipid and protein compared with the touching and high nutrient treatment group likely because that Porites associated with C15 zooxanthella increased heterotrophic feeding to compensate for restricted symbiodiniaceae photosynthesis. Additionally, P. cylindrica produced mucus to aid the removal of sediment, so that corals didn’t obviously bleach during the experiment. Collectively, P. cylindrica was more resistant to diving activities than A. hyacinthus which only relies on photoautotrophy. To ensure the sustainable development of coral reef dive tourism, it is necessary to strengthen the supervision of diving behaviors, rotate the diving areas, and conduct regular assessments on the coral status.


2021 ◽  
Vol 12 ◽  
Author(s):  
Nathan J. Robinson ◽  
Daniel García-Párraga ◽  
Brian A. Stacy ◽  
Alexander M. Costidis ◽  
Gabriela S. Blanco ◽  
...  

Sea turtles, like other air-breathing diving vertebrates, commonly experience significant gas embolism (GE) when incidentally caught at depth in fishing gear and brought to the surface. To better understand why sea turtles develop GE, we built a mathematical model to estimate partial pressures of N2 (PN2), O2 (PO2), and CO2 (PCO2) in the major body-compartments of diving loggerheads (Caretta caretta), leatherbacks (Dermochelys coriacea), and green turtles (Chelonia mydas). This model was adapted from a published model for estimating gas dynamics in marine mammals and penguins. To parameterize the sea turtle model, we used values gleaned from previously published literature and 22 necropsies. Next, we applied this model to data collected from free-roaming individuals of the three study species. Finally, we varied body-condition and cardiac output within the model to see how these factors affected the risk of GE. Our model suggests that cardiac output likely plays a significant role in the modulation of GE, especially in the deeper diving leatherback turtles. This baseline model also indicates that even during routine diving behavior, sea turtles are at high risk of GE. This likely means that turtles have additional behavioral, anatomical, and/or physiologic adaptions that serve to reduce the probability of GE but were not incorporated in this model. Identifying these adaptations and incorporating them into future iterations of this model will further reveal the factors driving GE in sea turtles.


2021 ◽  
Author(s):  
Daniel M. Palacios ◽  
Ladd M. Irvine ◽  
Barbara A. Lagerquist ◽  
James A. Fahlbusch ◽  
John Calambokidis ◽  
...  

Abstract Despite spending much of their time on activities underwater, the technology in use to track whales over large geographic ranges via satellite has been largely limited to locational data, with most applications focusing on characterizing their horizontal movements. We describe the development of the RDW tag, a new Argos-based satellite telemetry device that incorporates sensors for monitoring the movements and dive behavior of large whales over several months without requiring recovery. Based on an implantable design, the tag features a saltwater conductivity switch, a tri-axial accelerometer, and an optional pressure transducer, along with onboard software for data processing and detection of behavioral events or activities of interest for transmission. We configured the software to detect dives and create per-dive summaries describing behavioral events associated with feeding activities in rorqual whales. We conducted a validation by proxy of the dive summary and event detection algorithms using data from a medium-duration archival tag. The dive summary algorithm accurately reported dive depth and duration, while the accuracy of the lunge-feeding event detection algorithm was dependent on the precision of the accelerometer data that was used, with a predicted accuracy of 0.74 for correctly classifying feeding dives from 1/64-G precision data and 0.95 from 1-mG precision data. We also present data from field deployments of the tag on seven humpback whales ( Megaptera novaeangliae ) and one blue whale ( Balaenoptera musculus ). The eight tags transmitted over a median tracking period of 17.5 d (range: 3.9-76.4 d) across both species. The median proportion of the tracking period summarized by received dives for the eight tags was 50.4% (range: 11.1-88.7%). The median number of received dives per day was 76.5 (range: 1-191). The results documented diel and longer-term variability in diving and feeding behavior, showing marked differences within and among individuals tracked contemporaneously. By monitoring the per-dive behavior of large whales over multi-month timescales of movement, the RDW tags provided some of the first assessments of previously unobservable behaviors across entire geographic ranges, linking local-scale behavior to broader, ecosystem-scale processes. The RDW tag extends the applications of whale satellite telemetry to new areas of physiology, ecology, and conservation.


PLoS ONE ◽  
2021 ◽  
Vol 16 (8) ◽  
pp. e0252010
Author(s):  
Lisa K. Lauderdale ◽  
K. Alex Shorter ◽  
Ding Zhang ◽  
Joaquin Gabaldon ◽  
Jill D. Mellen ◽  
...  

The way an animal uses its habitat can serve as an indicator of habitat appropriateness for the species and individuals. Bottlenose dolphins (Tursiops truncatus and Tursiops aduncus) in accredited zoos and aquariums experience a range of habitat types and management programs that provide opportunities for dolphins to engage in species-appropriate behaviors and potentially influence their individual and group welfare. Data in the present study were collected as part of a larger study titled “Towards understanding the welfare of cetaceans in zoos and aquariums” (colloquially called the Cetacean Welfare Study). Non-invasive bio-logging devices (Movement Tags) recorded the diving behavior and vertical habitat movements of 60 bottlenose dolphins at 31 zoos and aquariums that were accredited by the Alliance for Marine Mammal Parks and Aquariums and/or the Association of Zoos & Aquariums. Bottlenose dolphins wore a Movement Tag one day per week for two five-week data collection periods. Demographic variables, environmental enrichment programs, training programs, and habitat characteristics were associated with habitat usage. Longer dive durations and use of the bottom third of the habitat were associated with higher enrichment program index values. Dolphins receiving new enrichment on a monthly/weekly schedule also used the bottom third of the habitat more often than those receiving new enrichment on a yearly/year+ schedule. Dolphins that were managed in a group that was split into smaller subgroups during the day and were reunited into one group at night spent less time in the top third of the habitat than those who remained in a single group with consistent members at all times. Dolphins that were managed as subgroups with rotating members but were never united as one group spent less time in the bottom third of the habitat than those who remained in a single group with consistent members at all times. Taken together, the results suggested that management practices, such as enrichment and training programs, played a greater role in how dolphins interacted with their environment relative to the physical characteristics of the habitat.


2021 ◽  
Vol 14 (1) ◽  
Author(s):  
Camrin D. Braun ◽  
Martin C. Arostegui ◽  
Simon R. Thorrold ◽  
Yannis P. Papastamatiou ◽  
Peter Gaube ◽  
...  

Many large marine predators make excursions from surface waters to the deep ocean below 200 m. Moreover, the ability to access meso- and bathypelagic habitats has evolved independently across marine mammals, reptiles, birds, teleost fishes, and elasmobranchs. Theoretical and empirical evidence suggests a number of plausible functional hypotheses for deep-diving behavior. Developing ways to test among these hypotheses will, however, require new ways to quantify animal behavior and biophysical oceanographic processes at coherent spatiotemporal scales. Current knowledge gaps include quantifying ecological links between surface waters and mesopelagic habitats and the value of ecosystem services provided by biomass in the ocean twilight zone. Growing pressure for ocean twilight zone fisheries creates an urgent need to understand the importance of the deep pelagic ocean to large marine predators. Expected final online publication date for the Annual Review of Marine Science, Volume 14 is January 2022. Please see http://www.annualreviews.org/page/journal/pubdates for revised estimates.


2021 ◽  
pp. 1-18
Author(s):  
Zhongshu Ren ◽  
Mohammad Javad Javaherian ◽  
Christine Gilbert

A deeper comprehension of hydrodynamic slamming can be achieved by revisiting the wedge water entry problem using flexible structures. In this work, two wedge models that are identical, with the exception of different bottom thicknesses, are vertically dropped into calm water. Pressure, full-field out-of-plane deflection, strain, vertical acceleration, and vertical position are measured. Full-field deflections and strains are measured using stereoscopic-digital image correlation (S-DIC) and strain gauges. A nondimensional number, R, quantifying the relative stiffness of the structure with respect to the fluid load is revisited. An experimental parametric study on the effect of R on the nondimensional hydrodynamic pressure and the maximum strain is presented. It was found there is a sharp change in the trend of pressure and strain when R passes through a critical value. It was also discovered that the structural deformation causes a delay in the peak pressure arrival time and a reduction in the peak pressure magnitude during the wedge water entry. Introduction When high-speed planing craft operating in waves becomes airborne and reenters the water surface, a substantial impact or “slam” between the vessel bottom and the water surface will occur (Faltinsen 2005; Lloyd 1989). The bottom slamming events occur frequently and may injure the passengers, compromise the equipment onboard, or even damage the structure. Slamming is a major cause of speed reduction in small craft where slamming loads are important. Current design criteria are primarily based on empirical measurements with little regard for the fluid–structure interaction (FSI) physics of the slamming phenomenon. This study offers a first step toward better understanding of FSI in slamming for optimal structural design in the future. Since the cross sections of most surface effect ships may be approximated by a V-shaped wedge, the slamming characteristics of these sections may be examined by dropping a wedge model into water (Faltinsen 2005; Lloyd 1989). Studying the wedge water entry problem is also helpful in shedding light on the wet deck slamming of catamaran, sloshing under the chamfered roof of a partially filled tank (Faltinsen 2000), seaplane landing (Wagner 1932), water landing of spacecraft and solid rocket boosters, water landing/ditching of aircraft (Abrate 2013), and animal diving behavior (Chang et al. 2016).


2021 ◽  
Vol 8 ◽  
Author(s):  
Catarina C. Santos ◽  
Andrés Domingo ◽  
John Carlson ◽  
Lisa J. Natanson ◽  
Paulo Travassos ◽  
...  

The shortfin mako is one of the most important shark species caught in Atlantic Ocean pelagic fisheries. Given increasing concerns for the stock status of the species, the present study was designed to fill gaps in the knowledge of habitat use and movement patterns of shortfin mako in the Atlantic Ocean. From 2015 to 2019, 53 shortfin makos were tagged with pop-up satellite archival tags within the North, Central, and Southwest Atlantic Ocean, with successful transmissions received from 34 tags. Generally, sharks tagged in the Northwest and Central Atlantic moved away from tagging sites showing low to no apparent residency patterns, whereas sharks tagged in the Northeast and Southwest Atlantic spent large periods of time near the Canary Archipelago and Northwest Africa, and over shelf and oceanic waters off southern Brazil and Uruguay, respectively. These areas showed evidence of site fidelity and were identified as possible key areas for shortfin mako. Sharks spent most of their time in temperate waters (18–22°C) above 90 m; however, data indicated the depth range extended from the surface down to 979 m, in water temperatures ranging between 7.4 and 29.9°C. Vertical behavior of sharks seemed to be influenced by oceanographic features, and ranged from marked diel vertical movements, characterized by shallower mean depths during the night, to yo-yo diving behavior with no clear diel pattern observed. These results may aid in the development of more informed and efficient management measures for this species.


2021 ◽  
Vol 8 ◽  
Author(s):  
Austin J. Gallagher ◽  
Nourah A. Alsudairy ◽  
Brendan D. Shea ◽  
Nicholas L. Payne ◽  
Carlos M. Duarte

Animal-borne video camera systems have long-been used to capture the fine-scale behaviors and unknown aspects of the biology of marine animals. However, their utility to serve as robust scientific tools in the greater bio-logging research community has not been fully realized. Here we provide, for the first time, an application of 360-degree camera technology to a marine organism, using a large tiger shark as a proof-of-concept case study. Leveraging the three-dimensional nature of the imaging technology, we derived 224 seafloor habitat assessments over the course of the nearly 1-h track, whereby the shark was able to survey ∼23,000 square meters of seafloor; over three-times greater than the capacity of non 360-degree cameras. The resulting data provided detailed information on habitat use, diving behavior, and swimming speed, as well seafloor mapping. Our results suggest that 360-degree cameras provide complimentary benefits—and in some cases superior efficiency—than unidirectional video packages, with an enhanced capacity to map seafloor.


Sign in / Sign up

Export Citation Format

Share Document