THE UPTAKE OF OESTRADIOL IN THE NORMAL MAMMARY GLAND. AN EXPERIMENTAL STUDY IN RATS

1967 ◽  
Vol 56 (1_Suppl) ◽  
pp. S228
Author(s):  
Sten Sander
Author(s):  
Iulia Maria Balaci ◽  
Simona Ciupe ◽  
A. R. Pop ◽  
Laura Parlapan ◽  
Alexandru Arion ◽  
...  

2008 ◽  
Vol 20 (5) ◽  
pp. 601-607
Author(s):  
Pagona Lagiou ◽  
Evangelia Samoli ◽  
Areti Lagiou ◽  
Christina Georgila ◽  
Pantelina Zourna ◽  
...  

Endocrinology ◽  
2005 ◽  
Vol 146 (8) ◽  
pp. 3577-3588 ◽  
Author(s):  
Mark D. Aupperlee ◽  
Kyle T. Smith ◽  
Anastasia Kariagina ◽  
Sandra Z. Haslam

Abstract Progesterone is a potent mitogen in the mammary gland. Based on studies using cells and animals engineered to express progesterone receptor (PR) isoforms A or B, PRA and PRB are believed to have different functions. Using an immunohistochemical approach with antibodies specific for PRA only or PRB only, we show that PRA and PRB expression in mammary epithelial cells is temporally and spatially separated during normal mammary gland development in the BALB/c mouse. In the virgin mammary gland when ductal development is active, the only PR protein isoform expressed was PRA. PRA levels were significantly lower during pregnancy, suggesting a minor role at this stage of development. PRB was abundantly expressed only during pregnancy, during alveologenesis. PRA and PRB colocalization occurred in only a small percentage of cells. During pregnancy there was extensive colocalization of PRB with 5-bromo-2′-deoxyuridine (BrdU) and cyclin D1; 95% of BrdU-positive cells and 83% of cyclin D1-positive cells expressed PRB. No colocalization of PRA with either BrdU or cyclin D1 was observed at pregnancy. In the virgin gland, PRA colocalization with BrdU or cyclin D1 was low; only 27% of BrdU-positive cells and 4% of cyclin D1-positive cells expressed PRA. The implication of these findings is that different actions of progesterone are mediated in PRB positive vs. PRA-positive cells in vivo. The spatial and temporal separation of PR isoform expression in mouse mammary gland provides a unique opportunity to determine the specific functions of PRA vs. PRB in vivo.


PLoS ONE ◽  
2014 ◽  
Vol 9 (7) ◽  
pp. e101546 ◽  
Author(s):  
Michael K. G. Stewart ◽  
Isabelle Plante ◽  
John F. Bechberger ◽  
Christian C. Naus ◽  
Dale W. Laird

Biomedicines ◽  
2021 ◽  
Vol 9 (9) ◽  
pp. 1204
Author(s):  
Moumita Chakraborty ◽  
Michal Hershfinkel

Zinc (Zn2+) plays an essential role in epithelial physiology. Among its many effects, most prominent is its action to accelerate cell proliferation, thereby modulating wound healing. It also mediates affects in the gastrointestinal system, in the testes, and in secretory organs, including the pancreas, salivary, and prostate glands. On the cellular level, Zn2+ is involved in protein folding, DNA, and RNA synthesis, and in the function of numerous enzymes. In the mammary gland, Zn2+ accumulation in maternal milk is essential for supporting infant growth during the neonatal period. Importantly, Zn2+ signaling also has direct roles in controlling mammary gland development or, alternatively, involution. During breast cancer progression, accumulation or redistribution of Zn2+ occurs in the mammary gland, with aberrant Zn2+ signaling observed in the malignant cells. Here, we review the current understanding of the role of in Zn2+ the mammary gland, and the proteins controlling cellular Zn2+ homeostasis and signaling, including Zn2+ transporters and the Gq-coupled Zn2+ sensing receptor, ZnR/GPR39. Significant advances in our understanding of Zn2+ signaling in the normal mammary gland as well as in the context of breast cancer provides new avenues for identification of specific targets for breast cancer therapy.


2020 ◽  
Vol 32 (8) ◽  
pp. 774
Author(s):  
Vahid Atashgaran ◽  
Pallave Dasari ◽  
Leigh J. Hodson ◽  
Andreas Evdokiou ◽  
Simon C. Barry ◽  
...  

Female mice heterozygous for a genetic mutation in transcription factor forkhead box p3 (Foxp3) spontaneously develop mammary cancers; however, the underlying mechanism is not well understood. We hypothesised that increased cancer susceptibility is associated with an underlying perturbation in mammary gland development. The role of Foxp3 in mammary ductal morphogenesis was investigated in heterozygous Foxp3Sf/+ and wildtype Foxp3+/+ mice during puberty and at specific stages of the oestrous cycle. No differences in mammary ductal branching morphogenesis, terminal end bud formation or ductal elongation were observed in pubertal Foxp3Sf/+ mice compared with Foxp3+/+ mice. During adulthood, all mice underwent normal regular oestrous cycles. No differences in epithelial branching morphology were detected in mammary glands from mice at the oestrus, metoestrus, dioestrus and pro-oestrus stages of the cycle. Furthermore, abundance of Foxp3 mRNA and protein in the mammary gland and lymph nodes was not altered in Foxp3Sf/+ mice compared with Foxp3+/+ mice. These studies suggest that Foxp3 heterozygosity does not overtly affect mammary gland development during puberty or the oestrous cycle. Further studies are required to dissect the underlying mechanisms of increased mammary cancer susceptibility in Foxp3Sf/+ heterozygous mice and the function of this transcription factor in normal mammary gland development.


Sign in / Sign up

Export Citation Format

Share Document