Studies of catecholamine effect on cyclic AMP in human cultured thyroid cells: their interaction with thyrotrophin receptor

1983 ◽  
Vol 102 (1) ◽  
pp. 62-67 ◽  
Author(s):  
Roberto S. Toccafondi ◽  
Maria Luisa Brandi ◽  
Carlo M. Rotella ◽  
Roberto Zonefrati

Abstract. Even though adrenergic nerve terminals between and around thyroid follicles and catecholamine stimulation of thyroid adenylate cyclase have been reported, there is no uniform concept on catecholamine interaction with thyrotrophin (TSH) receptors. Therefore, the effect of catecholamines on TSH-stimulated cyclic AMP (cAMP) accumulation in human follicular thyroid cells has been investigated, to thus eliminating the extrathyroidal actions of catecholamines. Epinephrine, norepinephrine and isoproterenol appeared to be rapid and potent stimulators of intracellular cAMP accumulation, the half maximum increase doses being 4 × 10−7m, 1 × 10−5m and 5 × 10−7m, respectively. While propranolol (1 × 10−5m) prevented the stimulatory effect of catecholamines and failed to inhibit the effect of bovine TSH, phentolamine (1 × 10−5m) enhanced the potency of norepinephrine and bovine TSH, leaving that of epinephrine unchanged. The effects of epinephrine (2 × 10−8m) and isoproterenol (2 × 10−8m) were additive to that of bovine TSH (0.5 mU/ml), but the effect of simultaneous stimulation with norepinephrine (5 × 10−7m) and bovine TSH (0.5 mU/ml) was lower than expected. Prenalterol, a selective β1-agonist, did not stimulate cAMP accumulation, while terbutaline, a selective β2-agonist, exerted a potent stimulation. Metoprolol, a selective β1-adrenergic blocker, did not affect the response of thyroid follicular cells to isoproterenol. These results demonstrate the existence of β-adrenergic receptors in human thyroid follicular cells, mainly of the type β2, apparently not correlated with TSH receptor. The existence of α-adrenergic receptors which counter-regulate TSH functional responses in human thyroid follicular cells is suggested.

1984 ◽  
Vol 106 (4) ◽  
pp. 482-489 ◽  
Author(s):  
S. P. Bidey ◽  
K. Ryder ◽  
R. Gaines-Das ◽  
N.J. Marshall ◽  
R. P. Ekins

Abstract. A clonal strain of thyrotrophin (TSH)-dependent rat thyroid cells (FRTL-5) has been used to evaluate the biological activity of reference preparations of both human and bovine TSH. Using the accumulation of intracellular cyclic AMP as a response parameter, the widely used bovine TSH preparation. Armour 'Thytropar', was calibrated against the First International Standard of Thyrotrophin (pituitary TSH), bovine, for immunoassay. Log dose – log response curves were parallel, and a relative potency of 2.4 IU/unit of 'Thytropar' was obtained. Subcultures of FRTL-5 cells were more responsive to both bovine and human TSH than were human thyroid follicular cells maintained as primary monolayer cultures. Dose-response curves for cyclic AMP accumulation were parallel for a single cell type differentially incubated with human TSH (the First International Reference Preparation) and bovine TSH (Armour 'Thytropar') preparations. The relative potencies (units: IU) of bovine-human TSH were of the order of 2.0 when tested on both FRTL-5 cultures and primary human thyroid monolayers. This suggests that in the spectrum of structural differences between TSH receptors of different species, the discriminatory powers of the human and FRTL-5 cell TSH receptor are similar. Thus FRTL-5 cells form the basis of a bioassay system of considerable value in the study of human thyroid stimulators, as we demonstrate in an evaluation of two recent preparations of human TSH.


1989 ◽  
Vol 122 (1) ◽  
pp. 185-NP ◽  
Author(s):  
A. P. Weetman ◽  
S. Cohen ◽  
M. W. Makgoba ◽  
L. K. Borysiewicz

ABSTRACT Intercellular adhesion molecule-1 (ICAM-1), hitherto identified on activated B cells, macrophages, dendritic cells, endothelia and certain epithelial cells, serves as a ligand for the lymphocyte function-associated antigen-1 (LFA-1). ICAM-1 binding by LFA-1 enhances the efficiency of lymphocyte-target cell and lymphocyte-accessory cell interactions. We have investigated the in-vitro expression of ICAM-1 by cultured thyroid cells from five patients with Graves' disease using indirect immunofluorescence analysis, and found that 30 ± 11% (mean ± s.d.) of cells were ICAM-1 positive under basal conditions. The proportion of cells which were ICAM-1 positive and the amount of ICAM-1 per cell (assessed by fluorescence intensity) were both increased in all cases by the cytokines γ-interferon, interleukin-1 and tumour necrosis factor. Immunohistochemical analysis of frozen sections from thyroidectomy specimens demonstrated ICAM-1 on thyroid follicular cells in areas of lymphocytic infiltration in patients with Graves' disease (n = 2) or Hashimoto's thyroiditis (n = 2). ICAM-1 was not found in specimens from a patient with a toxic multinodular goitre or a patient with Graves' disease without focal lymphocytic accumulation. These results suggest that the thyroid epithelium may express ICAM-1 as well as major histocompatibility complex class II antigens, such as HLA-DR, in response to locally synthesized cytokines. The enhanced expression of ICAM-1 may render these cells more susceptible as targets for lymphocytemediated cytotoxicity, and together with HLA-DR antigen expression may increase the accessory cell capability of the thyroid follicular cells. Journal of Endocrinology (1989) 122, 185–191


1984 ◽  
Vol 101 (3) ◽  
pp. 269-NP ◽  
Author(s):  
S. P. Bidey ◽  
L. Chiovato ◽  
A. Day ◽  
M. Turmaine ◽  
R. P. Gould ◽  
...  

ABSTRACT The cyclic AMP response to bovine TSH was characterized in a strain of rat thyroid follicular cells (FRTL-5) maintained in continuous culture. Significant stimulation of intracellular cyclic AMP was attained at a TSH dose of 5 μu./ml. Cyclic AMP accumulation continued to increase, at higher TSH doses, with no evidence for attainment of a maximum level at the highest dose tested (5 mu./ml). The precision of TSH measurement was better than 10% over the range 50–5000 μu./ml, comparing favourably with that observed with analogous assays based on human cells, tissue slices or membrane preparations. Using sequential subcultures of FRTL-5 cells, the between-assay variation in response to a single dose of a standard preparation of bovine TSH (53/11; 370 μu./ml) was of the order of 20% which compared favourably with the between-assay variation observed with different cultures of human thyroid cells. Prolongation of the incubation of FRTL-5 cells with TSH to 3 h revealed a progressive increase in the extracellular accumulation of cyclic AMP. Addition of TSH to resting FRTL-5 cells resulted in a stimulation of inorganic iodide uptake with pronounced bell-shaped dose–response characteristics. Thus a maximum uptake was observed at a TSH dose of 100 μu./ml with a significant reduction at higher doses. Acute stimulation of cells with TSH (100 μu./ml) resulted in a rapid and marked alteration in cell morphology, with evidence of cellular retraction and surface ruffling. J. Endocr. (1984) 101, 269–276


1981 ◽  
Vol 88 (2) ◽  
pp. 187-NP ◽  
Author(s):  
J. R. BOURKE ◽  
K. L. CARSELDINE ◽  
S. H. FERRIS ◽  
G. J. HUXHAM ◽  
S. W. MANLEY

Thyrotrophin (TSH), cyclic AMP, cyclic GMP and 1-methyl-3-isobutyl-xanthine (MIX) promoted the reassociation of isolated porcine and human thyroid cells into follicular structures in culture and stimulated the uptake of radio-iodide. Monolayer cells were present in all cultures, but in decreasing proportions as the concentration of stimulator was increased. The resting membrane potential of porcine thyroid cells cultured for 4 days in the presence of TSH was −54 ± 3·6 (mean ± s.d.) mV for follicular cells and −31 ± 2·6 mV for monolayer cells. In the absence of TSH, only monolayer cells were present and their membrane potential was −24 ± 2·0 mV. Removal of hormone by washing resulted in hyperpolarization to −70 ± 2·9 mV (follicular cells) or −59 ± 3·4 mV (monolayer cells). Subsequent replacement of TSH, or addition of cyclic AMP, MIX, prostaglandin E1 (PGE1) or long-acting thyroid stimulator immunoglobulin resulted in depolarization of previously hyperpolarized cells, to approximately the membrane potential observed before washing. Incubation in MIX resulted in enhanced sensitivity to the depolarizing effect of TSH. Cells cultured in the absence of TSH were unresponsive to TSH or other stimulators. The membrane potential of human thyroid cells behaved similarly in response to TSH, to hormone removal and replacement, and to MIX and PGE1.


Endocrinology ◽  
2004 ◽  
Vol 145 (3) ◽  
pp. 1464-1472 ◽  
Author(s):  
M. J. Costa ◽  
Y. Song ◽  
P. Macours ◽  
C. Massart ◽  
M. C. Many ◽  
...  

Abstract Partition of signaling molecules in sphingolipid-cholesterol-enriched membrane domains, among which are the caveolae, may contribute to signal transduction efficiency. In normal thyroid, nothing is known about a putative TSH/cAMP cascade compartmentation in caveolae or other sphingolipid-cholesterol-enriched membrane domains. In this study we show for the first time that caveolae are present in the apical membrane of dog and human thyrocytes: caveolin-1 mRNA presence is demonstrated by Northern blotting in primary cultures and that of the caveolin-1 protein by immunohistochemistry performed on human thyroid tissue. The TSH receptor located in the basal membrane can therefore not be located in caveolae. We demonstrate for the first time by biochemical methods the existence of sphingolipid-cholesterol-enriched domains in human and dog thyroid follicular cells that contain caveolin, flotillin-2, and the insulin receptor. We assessed a possible sphingolipid-cholesterol-enriched domains compartmentation of the TSH receptor and the α- subunit of the heterotrimeric Gs and Gq proteins using two approaches: Western blotting on detergent-resistant membranes isolated from thyrocytes in primary cultures and the influence of 10 mm methyl-β-cyclodextrin, a cholesterol chelator, on basal and stimulated cAMP accumulation in intact thyrocytes. The results from both types of experiments strongly suggest that the TSH/cAMP cascade in thyroid cells is not associated with sphingolipid-cholesterol-enriched membrane domains.


1983 ◽  
Vol 104 (1) ◽  
pp. 64-68 ◽  
Author(s):  
Maria Luisa Brandi ◽  
Carlo M. Rotella ◽  
Annalisa Tanini ◽  
Roberto S. Toccafondi

Abstract. In order to investigate the presence of α-adrenergic receptors in human thyroid, we have studied the effect of α-adrenergic agonists and antagonists on cGMP cellular content of human thyroid cells in primary culture. Epinephrine as well as TSH were not able to modify the cGMP cellular levels, while norepinephrine significantly increased cGMP accumulation already at 10 nm, a dose inactive on cAMP accumulation. A non selective α-adrenergic antagonist, phentolamine, significantly inhibited cGMP accumulation induced by norepinephrine. Norepinephrine-induced cGMP accumulation was unaffected by prazosin, an α1-adrenergic antagonist, but was abolished by yohimbine, an α2-adrenergic antagonist. Phenylephrine, an α-adrenergic agonist, produced an increase of cellular cGMP levels without modifying cAMP content. In the presence of TSH, the cGMP response to norepinephrine was not modified; however, the increase of cAMP levels was inhibited by norepinephrine at doses inactive on cAMP accumulation, but active on cGMP levels. The present results demonstrate the existence in human thyroid cells of α2-adrenergic receptors, regulating the guanylate cyclase system. It may be postulated that the counter-regulation exerted by α-adrenergic agonists on the response to TSH operates on the TSH-dependent adenylate cyclase.


1997 ◽  
Vol 82 (8) ◽  
pp. 2702-2709 ◽  
Author(s):  
M. Ivan ◽  
M. Ludgate ◽  
V. Gire ◽  
J. A. Bond ◽  
D. Wynford-Thomas

Point mutations of the gsp protooncogene (encoding theα -subunit of the Gs protein) that constitutively activate the cAMP signaling pathway are a common feature of and a plausible causative mechanism for thyroid hyperfunctioning adenomas (hot nodules). To investigate the extent to which mutant gsp acting alone can induce proliferation of thyroid follicular cells, we generated an amphotropic retroviral vector (based on the pBABE-neo plasmid and psi-CRIP packaging line) to permit stable introduction of a hemagglutinin-tagged Gln227→Leu mutant gsp gene into normal human thyrocytes in vitro. The biological activity of the vector was confirmed by detection of HA-tagged Gsp protein expression and induction of cAMP synthesis in selected target cells. Normal human thyroid follicular cells in primary monolayer culture were infected with the gsp retroviral vector or with corresponding vectors expressing mutant H-ras or neo only as positive and negative controls, respectively. Although, as before, mutant ras generated 10–20 well differentiated epithelial colonies/dish of 105 infected cells, with an average lifespan of 15–20 population doublings, only small groups of no more than 15–50 differentiated thyrocytes were observed with the gsp vector. In addition to standard conditions (10% FCS), infections were performed in reduced serum (1% FCS, TSH, and insulin), in the presence of isobutylylmethylxanthine, or in the presence of agents capable of closing gap junctions, with no significant difference in outcome. Although little or no proliferative response was observed regardless of the conditions, there was clear evidence of morphological response (rearrangement of the actin cytoskeleton and increased cell size). The results suggest that gsp mutation may not be a sufficient proliferogenic stimulus by itself to account for hot nodule formation.


2015 ◽  
Vol 2015 ◽  
pp. 1-6 ◽  
Author(s):  
Ana Paula Santin Bertoni ◽  
Ilma Simoni Brum ◽  
Ana Caroline Hillebrand ◽  
Tania Weber Furlanetto

Thyroid cancer and thyroid nodules are more prevalent in women than men, so female sex hormones may have an etiological role in these conditions. There are no data about direct effects of progesterone on thyroid cells, so the aim of the present study was to evaluate progesterone effects in the sodium-iodide symporterNIS, thyroglobulinTG, thyroperoxidaseTPO, andKI-67genes expression, in normal thyroid follicular cells, derived from human tissue.NIS,TG,TPO, andKI-67mRNA expression increased significantly after TSH 20 μUI/mL, respectively: 2.08 times,P<0.0001; 2.39 times,P=0.01; 1.58 times,P=0.0003; and 1.87 times,P<0.0001. In thyroid cells treated with 20 μUI/mL TSH plus 10 nM progesterone, RNA expression ofNIS,TG, andKI-67genes increased, respectively: 1.78 times,P<0.0001; 1.75 times,P=0.037; and 1.95 times,P<0.0001, andTPOmRNA expression also increased, though not significantly (1.77 times,P=0.069). These effects were abolished by mifepristone, an antagonist of progesterone receptor, suggesting that genes involved in thyroid cell function and proliferation are upregulated by progesterone. This work provides evidence that progesterone has a direct effect on thyroid cells, upregulating genes involved in thyroid function and growth.


2008 ◽  
Vol 93 (10) ◽  
pp. 4080-4087 ◽  
Author(s):  
E. Ferretti ◽  
E. Tosi ◽  
A. Po ◽  
A. Scipioni ◽  
R. Morisi ◽  
...  

Context: Notch genes encode receptors for a signaling pathway that regulates cell growth and differentiation in various contexts, but the role of Notch signaling in thyroid follicular cells has never been fully published. Objective: The objective of the study was to characterize the expression of Notch pathway components in thyroid follicular cells and Notch signaling activities in normal and transformed thyrocytes. Design/Setting and Patients: Expression of Notch pathway components and key markers of thyrocyte differentiation was analyzed in murine and human thyroid tissues (normal and tumoral) by quantitative RT-PCR and immunohistochemistry. The effects of Notch overexpression in human thyroid cancer cells and FTRL-5 cells were explored with analysis of gene expression, proliferation assays, and experiments involving transfection of a luciferase reporter construct containing human NIS promoter regions. Results: Notch receptors are expressed during the development of murine thyrocytes, and their expression levels parallel those of thyroid differentiation markers. Notch signaling characterized also normal adult thyrocytes and is regulated by TSH. Notch pathway components are variably expressed in human normal thyroid tissue and thyroid tumors, but expression levels are clearly reduced in undifferentiated tumors. Overexpression of Notch-1 in thyroid cancer cells restores differentiation, reduces cell growth rates, and stimulates NIS expression via a direct action on the NIS promoter. Conclusion: Notch signaling is involved in the determination of thyroid cell fate and is a direct regulator of thyroid-specific gene expression. Its deregulation may contribute to the loss of differentiation associated with thyroid tumorigenesis.


1991 ◽  
pp. 223-230
Author(s):  
E. Tolosa ◽  
M. Marti ◽  
C. Roura ◽  
A. Lucas ◽  
R. Pujol-Borrell

Sign in / Sign up

Export Citation Format

Share Document