Biphasic effect of interleukin-1β on arginine vasopressin-induced cellular cyclic adenosine monophosphate production in cultured rat renal papillary collecting tubule cells

1995 ◽  
Vol 132 (4) ◽  
pp. 472-478
Author(s):  
San-e Ishikawa ◽  
Toshikazu Saito

Ishikawa S, Saito T. Biphasic effect of interleukin-1β on arginine vasopressin-induced cellular cyclic adenosine monophosphate production in cultured rat renal papillary collecting tubule cells. Eur J Endocrinol 1995;132:472–8. ISSN 0804–4643 The present study was undertaken to determine whether interleukin (IL)-1β affects the response of cellular cyclic adenosine monophosphate production to arginine vasopressin (AVP) in cultured rat renal papillary collecting tubule cells. Arginine vasopressin increased cellular cAMP production in a dose-dependent manner. A 10-min exposure of cells to IL-1β at a concentration of 1 × 10−12 mol/l or higher significantly reduced the AVP-induced increases in cellular cAMP production but did not affect the 2 × 10−8 mol/l forskolin-induced increases in cellular cAMP production. The IL-1β inhibition disappeared totally when cells were pretreated with 100 μg/1 pertussis toxin for 2 h. In contrast, more than a 30-min exposure of cells to IL-1β increased basal cAMP levels and enhanced both the AVP- and forskolin-induced increases in cellular cAMP production. These results indicate that IL-1β produces biphasic regulation of AVP-induced cellular cAMP production in renal papillary collecting tubule cells. The inhibition by IL-1β is dependent on the activation of pertussis toxin-sensitive G protein. However, the mechanism whereby the longer exposure to IL-1β enhances cAMP production remains to be determined. San-e Ishikawa, Division of Endocrinology and Metabolism, Department of Medicine, Jichi Medical School, 3311-1 Yakushiji Minamikawachi-machi, Tochigi 329-04. Japan

1989 ◽  
Vol 121 (3) ◽  
pp. 467-477 ◽  
Author(s):  
S. Ishikawa ◽  
T. Saito

ABSTRACT The effect of extracellular calcium (Ca2+) on the cellular action of arginine vasopressin (AVP) was examined using an Na+, K+-ATPase inhibitor in rat renal papillary collecting tubule cells in culture. The pretreatment of cells with ouabain enhanced basal and AVP-induced cAMP production in a dose-dependent manner. The augmentation by ouabain of cellular cAMP production in response to AVP was totally abolished by co-treatment with cobalt, lanthanum, verapamil or Ca2+-free medium containing 1 mmol EGTA/l, each blocking cellular Ca2+ uptake by different mechanisms. Two other findings indicated that ouabain directly stimulated cellular Ca2+ mobilization; namely, that ouabain significantly increased 45Ca2+ influx and cellular free Ca2+ concentration ([Ca2+]i) determined by Fura-2 fluorescence. The ouabain-induced increase in [Ca2+]i was completely blocked by either cobalt or Ca2+-free medium containing 1 mmol EGTA/l. AVP at 0·1 μmol/l increased [Ca2+]i to 177·1 ±26·2 nmol/l from 92·2 ± 8·0 nmol/l (P<0·01) in renal papillary collecting tubule cells, and ouabain significantly enhanced the AVP-induced increase in [Ca2+]i. The increase of cellular free Ca2+ induced by ouabain probably binds to calmodulin to form an active complex of Ca2+-calmodulin in the cell, since two chemically dissimilar antagonists of calmodulin attenuated the enhancement by ouabain of cAMP production in response to AVP. These results therefore indicate that ouabain increases cellular Ca2+ uptake and enhances AVP-induced cellular free Ca2+ mobilization and its own second messenger cAMP production in renal papillary collecting tubule cells, and that extracellular Ca2+ is an important source for ouabain-mobilized cellular Ca2+. Journal of Endocrinology (1989) 121, 467–477


1993 ◽  
Vol 128 (6) ◽  
pp. 568-572 ◽  
Author(s):  
Lars Eikvar ◽  
Kristin Austlid Taskén ◽  
Winnie Eskild ◽  
Vidar Hansson

The present study examines the effects of 12-0-tetradecanoylphorbol-13-acetate (TPA) on agonist-regulated 3′, 5′-cyclic adenosine monophosphate (cAMP) formation and cAMP-mediated effects in cultured Sertoli cells from immature rats. Concentration-dependent stimulation of cAMP levels by follicle-stimulating hormone (FSH) was inhibited dramatically by the coaddition of 100 nmol/l TPA, which exerted a similar inhibition of glucagon- and isoproterenol-stimulated cAMP production. These results show that protein kinase C (PKC) activation by TPA attenuates Gs-protein-mediated agonist activation of cAMP production. (− )-N6(R)-Phenylisopropyladenosine (L-PIA), an A1-adenosine receptor agonist, inhibited cAMP stimulation by FSH in a concentration-dependent manner. When LPIA was added in increasing concentrations simultaneously with 100 nmol/l TPA, the L-PIA still inhibited FSH-stimulated cAMP production in a concentration-dependent manner. In the presence of TPA, the half-inhibitory concentration (IC50) for L-PIA inhibition of cAMP formation was reduced by more than one order of magnitude, indicating that PKC activation by TPA increases the sensitivity of Sertoli cells to G-protein-mediated agonist inhibition of cAMP production. The inhibitory effects of TPA on FSH-stimulated cAMP production were still observed when cAMP phosphodiesterase activity was inhibited by 1 mmol/l methylisobutylxanthine or when the activity of Gxi-protein was eliminated by pretreatment with 100 μg/l pertussis toxin. Taken together, the results indicate that PKC activation inhibits agonist-dependent stimulation of cAMP production by phosphorylation of components common to all the activating agonists used, and not via stimulation of Gi-protein activity or degradation of cAMP by cAMP phosphodiesterase activity. The increased sensitivity to L-PIA inhibition of cAMP formation induced by TPA may simply be a result of the reduced activity of the agonist-receptor/Gs-protein/C complex.


1992 ◽  
Vol 262 (5) ◽  
pp. F784-F792 ◽  
Author(s):  
S. Ishikawa ◽  
K. Okada ◽  
T. Saito

We determined whether extracellular pH (pHe) and intracellular pH (pHi) modulate the cellular actions of arginine vasopressin (AVP) in rat renal papillary collecting tubule cells in culture. AVP significantly increased cellular adenosine 3',5'-cyclic monophosphate (cAMP) production and cellular free calcium concentration ([Ca2+]i). pHe ranging from 6.8 to 8.0 distributed the pHi between 6.94 and 7.27. The acidified pHe reduced the AVP- and forskolin-induced cAMP production, the AVP-mobilized [Ca2+]i, and [3H]AVP receptor binding, and the alkalinized pHe enhanced the AVP- and forskolin-produced cAMP. Intracellular acidification occurred under three different conditions as follows: using carbonyl cyanide-m-chlorophenylhydrazone (CCCP), acetate buffer, and bicarbonate buffer with a reduced concentration of bicarbonate. Intracellular acidification significantly diminished both the AVP- and forskolin-induced increases in cAMP production and the AVP-mobilized [Ca2+]i but did not alter [3H]AVP receptor binding. Intracellular alkalinization by NH4Cl or chloride-free bicarbonate buffer, in contrast, augmented them. These results indicate that alterations in pHi modulate the cellular action of AVP to produce cAMP and mobilize [Ca2+]i in renal papillary collecting tubule cells. Also, reduced receptor binding of AVP is involved in the mechanism of the effects of low pHe.


2019 ◽  
Vol 18 (1) ◽  
pp. 34-38
Author(s):  
Chen Lei ◽  
Pan Xiang ◽  
Shen Yonggang ◽  
Song Kai ◽  
Zhong Xingguo ◽  
...  

The aim of this study was to determine whether polydatin, a glucoside of resveratrol isolated from the root of Polygonum cuspidatum, warranted development as a potential therapeutic for ameliorating the pain originating from gallbladder spasm disorders and the underlying mechanisms. Guinea pig gallbladder smooth muscles were treated with polydatin and specific inhibitors to explore the mechanisms underpinning polydatin-induced relaxation of carbachol-precontracted guinea pig gallbladder. Our results shown that polydatin relaxed carbachol-induced contraction in a dose-dependent manner through the nitric oxide/cyclic guanosine monophosphate/protein kinase G and the cyclic adenosine monophosphate/protein kinase A signaling pathways as well as the myosin light chain kinase and potassium channels. Our findings suggested that there was value in further exploring the potential therapeutic use of polydatin in gallbladder spasm disorders.


1998 ◽  
Vol 89 (1) ◽  
pp. 49-57 ◽  
Author(s):  
Richard C. Prielipp ◽  
Drew A. MacGregor ◽  
Roger L. Royster ◽  
Neal D. Kon ◽  
Michael H. Hines ◽  
...  

Background Patients may receive more than one positive inotropic drug to improve myocardial function and cardiac output, with the assumption that the effects of two drugs are additive. The authors hypothesized that combinations of dobutamine and epinephrine would produce additive biochemical and hemodynamic effects. Methods The study was performed in two parts. Phase 1 used human lymphocytes in an in vitro model of cyclic adenosine monophosphate (cAMP) generation in response to dobutamine (10(-8) to 10(-4) M) or epinephrine (10(-9) M to 10(-5) M), and dobutamine and epinephrine together. Phase 2 was a clinical study in patients after aortocoronary artery bypass in which isobolographic analysis compared the cardiotonic effects of dobutamine (1.25, 2.5, or 5 microg x kg(-1) x min(-1)) or epinephrine (10, 20, or 40 ng x kg(-l) x min(-1)), alone or in combination. Results In phase 1, dobutamine increased cAMP production 41%, whereas epinephrine increased cAMP concentration approximately 200%. However, when epinephrine (10(-6) M) and dobutamine were combined, dobutamine reduced cAMP production at concentrations between 10(-6) to 10(-4) M (P = 0.001). In patients, 1.25 to 5 microg x kg(-1) x min(-1) dobutamine increased the cardiac index (CI) 15-28%. Epinephrine also increased the CI with each increase in dose. However, combining epinephrine with the two larger doses of dobutamine (2.5 and 5microg x kg(-1) x mi(-1)) did not increase the CI beyond that achieved with epinephrine and the lowest dose of dobutamine (1.25 microg x kg(-1) x min(-1)). In addition, the isobolographic analysis for equieffective concentrations of dobutamine and epinephrine suggests subadditive effects. Conclusions Dobutamine inhibits epinephrine-induced production of cAMP in human lymphocytes and appears to be subadditive by clinical and isobolographic analyses of the cardiotonic effects. These findings suggest that combinations of dobutamine and epinephrine may be less than additive.


1988 ◽  
Vol 167 (6) ◽  
pp. 1963-1968 ◽  
Author(s):  
L S Gray ◽  
J Gnarra ◽  
E L Hewlett ◽  
V H Engelhard

Cholera toxin (CT), but not pertussis toxin (PT), treatment of cloned murine CTL inhibited target cell lysis in a dose-dependent fashion. The effects of CT were mimicked by forskolin and cyclic adenosine monophosphate (cAMP) analogues. Inhibition of cytotoxicity by CT and cAMP analogs was mediated in part by attenuation of conjugate formation. Additionally, both CT and cAMP analogs blocked the increase in intracellular Ca2+ induced by stimulation of the TCR complex by mAbs. These findings indicate that cAMP inhibits the activity of CTL by two distinct mechanisms and suggests a role for this second messenger in CTL-mediated cytolysis.


2002 ◽  
Vol 172 (1) ◽  
pp. 95-104 ◽  
Author(s):  
AM Ronco ◽  
PF Moraga ◽  
MN Llanos

We have previously demonstrated that the release of arachidonic acid (AA) from human chorionic gonadotropin (hCG)-stimulated Leydig cells occurs in a dose- and time-dependent manner. In addition, the amount of AA released was dependent on the hormone-receptor interaction and the concentration of LH-hCG binding sites on the cell surface. The present study was conducted to evaluate the involvement of phospholipase A(2) (PLA(2)) and G proteins in AA release from hormonally stimulated rat Leydig cells, and the possible role of this fatty acid in cAMP production. Cells were first prelabelled with [(14)C]AA to incorporate the fatty acid into cell phospholipids, and then treated in different ways to evaluate AA release. hCG (25 mIU) increased the release of AA to 180+/-12% when compared with AA released from control cells, arbitrarily set as 100%. Mepacrine and parabromophenacyl bromide (pBpB), two PLA(2) inhibitors, decreased the hormone-stimulated AA release to 85+/-9 and 70+/-24% respectively. Conversely, melittin, a PLA(2) stimulator, increased the release of AA up to 200% over control. The inhibitory effect of mepacrine on the release of AA was evident in hCG-treated Leydig cells, but not in the melittin-treated cells. To determine if the release of AA was also mediated through a G protein, cells were first permeabilized and subsequently treated with pertussis toxin or GTPgammaS, a non-hydrolyzable analog of GTP. Results demonstrate that GTPgammaS was able to induce a similar level of the release of AA as hCG. In addition, pertussis toxin completely abolished the stimulatory effect of hCG on the release of AA, indicating that a member of the G(i) family was involved in the hCG-dependent release of AA. Cells treated with PLA(2) inhibitors did not modify cAMP production, but exogenously added AA significantly reduced cAMP production from hCG-treated Leydig cells, in a manner dependent on the concentration of AA and hCG. Results presented here suggest an involvement of PLA(2) and G proteins in the release of AA from hCG-stimulated Leydig cells, and under particular conditions, regulation of cAMP production by this fatty acid in these cells.


Sign in / Sign up

Export Citation Format

Share Document