scholarly journals Arachidonic acid release from rat Leydig cells: the involvement of G protein, phospholipase A2 and regulation of cAMP production

2002 ◽  
Vol 172 (1) ◽  
pp. 95-104 ◽  
Author(s):  
AM Ronco ◽  
PF Moraga ◽  
MN Llanos

We have previously demonstrated that the release of arachidonic acid (AA) from human chorionic gonadotropin (hCG)-stimulated Leydig cells occurs in a dose- and time-dependent manner. In addition, the amount of AA released was dependent on the hormone-receptor interaction and the concentration of LH-hCG binding sites on the cell surface. The present study was conducted to evaluate the involvement of phospholipase A(2) (PLA(2)) and G proteins in AA release from hormonally stimulated rat Leydig cells, and the possible role of this fatty acid in cAMP production. Cells were first prelabelled with [(14)C]AA to incorporate the fatty acid into cell phospholipids, and then treated in different ways to evaluate AA release. hCG (25 mIU) increased the release of AA to 180+/-12% when compared with AA released from control cells, arbitrarily set as 100%. Mepacrine and parabromophenacyl bromide (pBpB), two PLA(2) inhibitors, decreased the hormone-stimulated AA release to 85+/-9 and 70+/-24% respectively. Conversely, melittin, a PLA(2) stimulator, increased the release of AA up to 200% over control. The inhibitory effect of mepacrine on the release of AA was evident in hCG-treated Leydig cells, but not in the melittin-treated cells. To determine if the release of AA was also mediated through a G protein, cells were first permeabilized and subsequently treated with pertussis toxin or GTPgammaS, a non-hydrolyzable analog of GTP. Results demonstrate that GTPgammaS was able to induce a similar level of the release of AA as hCG. In addition, pertussis toxin completely abolished the stimulatory effect of hCG on the release of AA, indicating that a member of the G(i) family was involved in the hCG-dependent release of AA. Cells treated with PLA(2) inhibitors did not modify cAMP production, but exogenously added AA significantly reduced cAMP production from hCG-treated Leydig cells, in a manner dependent on the concentration of AA and hCG. Results presented here suggest an involvement of PLA(2) and G proteins in the release of AA from hCG-stimulated Leydig cells, and under particular conditions, regulation of cAMP production by this fatty acid in these cells.

1998 ◽  
Vol 25 (5) ◽  
pp. 539 ◽  
Author(s):  
Helen R. Irving

Since receptor-coupled G proteins increase GTP hydrolysis (GTPase) activity upon ligands binding to the receptor, a study was undertaken to determine if abscisic acid (ABA) induced such an effect. Plasma membranes isolated from etiolated maize (Zea mays L.) coleoptiles were enriched in GTPase activity relative to microsomal fractions. Vanadate was included in the assay to inhibit the high levels of vanadate sensitive low affinity GTPases present. Under these conditions, GTPase activity was enhanced by Mg2+, stimulated by mastoparan, and inhibited by GTPγS indicating the presence of either monomeric or heterotrimeric G proteins. The combination of NaF and AlCl3 is expected to inhibit heterotrimeric G protein activity but had little effect on GTPase activity in maize coleoptile membranes. Cholera toxin enhanced basal GTPase activity, confirming the presence of heterotrimeric G proteins in maize plasma membranes. Pertussis toxin also slightly enhanced basal GTPase activity in maize membranes. Abscisic acid enhanced GTPase activity optimally at 5 mmol/L Mg2+ in a concentration dependent manner by 1.5-fold at 10 µmol/L and up to three-fold at 100 µmol/L ABA. Abscisic acid induced GTPase activity was inhibited by GTPγS, the combination of NaF and AlCl3, and pertussis toxin. Overall, these results are typical of a receptor-coupled G protein responding to its ligand.


2003 ◽  
Vol 99 (2) ◽  
pp. 392-399 ◽  
Author(s):  
Igor M. Nikonorov ◽  
Thomas J. J. Blanck ◽  
Esperanza Recio-Pinto

Background G-protein activation mediates inhibition of N-type Ca2+ currents. Volatile anesthetics affect G-protein pathways at various levels, and activation of G-proteins has been shown to increase the volatile anesthetic potency for inhibiting the electrical-induced contraction in ileum. The authors investigated whether isoflurane inhibition of N-type Ba2+ currents was mediated by G-protein activation. Methods N-type Ba2+ currents were measured in the human neuronal SH-SY5Y cell line by using the whole cell voltage-clamp method. Results Isoflurane was found to have two effects on N-type Ba2+ currents. First, isoflurane reduced the magnitude of N-type Ba2+ currents to a similar extent (IC50 approximately 0.28 mm) in the absence and presence of GDPbetaS (a nonhydrolyzable GDP analog). Interestingly, GTPgammaS (a nonhydrolyzable GTP analog and G-protein activator) in a dose-dependent manner reduced the isoflurane block; 120 microm GTPgammaS completely eliminated the block of 0.3 mm isoflurane and reduced the apparent isoflurane potency by approximately 2.4 times (IC50 approximately 0.68 mm). Pretreatment with pertussis toxin or cholera toxin did not eliminate the GTPgammaS-induced protection against the isoflurane block. Furthermore, isoflurane reduced the magnitude of voltage-dependent G-protein-mediated inhibition of N-type Ba2+ currents, and this effect was eliminated by pretreatment with pertussis toxin or cholera toxin. Conclusions It was found that activation of G-proteins in a neuronal environment dramatically reduced the isoflurane potency for inhibiting N-type Ba2+ currents and, in turn, isoflurane affected the G-protein regulation of N-type Ba2+ currents.


1988 ◽  
Vol 60 (01) ◽  
pp. 059-062 ◽  
Author(s):  
Jean-Paul Oudinet ◽  
Josée Sraer ◽  
Marcelle Bens ◽  
Raymond Ardaillou

SummaryThe effect of the association of purified polymorphonuclear leukocytes (PMNL) with platelets on arachidonic acid (AA) metabolism was studied in the presence of various concentrations of this fatty acid. Both thromboxane B2 (TXB2) and 12-hydroxyeicosatetraenoic acid (12-HETE) were measured. In the presence of tracer doses of AA, addition of increasing amounts of PMNL to platelets inhibited in a concentration-dependent manner their 12-HETE and TXB2 production. This inhibition was not due to diversion of AA metabolism towards other pathways since, apart a negligible amount of 12,20-diHETE, no other product could be detected. Inhibition of piatelet-TXB2 synthesis by PMNL persisted at increasing concentrations of AA below 16 μM. Above this concentration, TXB2 production by platelets incubated alone diminished progressively. Addition of PMNL blunted in part this inhibitory effect and even resulted, above 16 μM AA, in an increased production of TXB2. In contrast with what was observed for TXB2 formation, the inhibition of 12-HETE synthesis persisted when PMNL and platelets were coincubated in the presence of high doses of AA (163 μM). At this concentration, 15-HETE generation became apparent for each cell type incubated separately and was markedly enhanced in the coincubation studies. The present investigation demonstrates that the presence of PMNL modifies the metabolism of arachidonate by human platelets. Moreover, this cell-cell interaction markedly depends on the concentration of substrate. PMNL in excess may attenuate synthesis by platelets of their toxic products.


2005 ◽  
Vol 93 (6) ◽  
pp. 3146-3156 ◽  
Author(s):  
D. D. Denson ◽  
J. Li ◽  
X. Wang ◽  
D. C. Eaton

BK-channels in GH3 cells are activated by arachidonic acid produced by c-PLA2. β-adrenergic agonists also activate BK channels and were presumed to do so via production of cAMP. We, however, show for the first time in GH3 cells that a β-adrenergic agonist activates a pertussis-toxin-sensitive G protein that activates c-PLA2. The arachidonic acid produced by c-PLA2 then activates BK channels. We examined BK channels in cell-attached patches and in excised patches from untreated GH3 cells and from GH3 cells exposed to c-PLA2 antisense oligonucleotides. For the cell-attached patch experiments, physiologic pipette and bath solutions were used. For the excised patches, 150 mM KCl was used in both the pipette and bath solutions, and the cytosolic surface contained 1 μM free Ca2+ (buffered with 5 mM K2EGTA). Treatment of GH3 cells with the G protein activator, fluoroaluminate, (AlF4−) produced an increase in the Po of BK channels of 177 ± 41% (mean ± SD) in cell-attached patches. Because G proteins are membrane associated, we also added an activator of G proteins, 100 μM GTP-γ-S, to the cytosolic surface of excised patches. This treatment leads to an increase in Po of 50 ± 9%. Similar treatment of excised patches with GDP-β-S had no effect on Po. Isoproterenol (1 μM), an activator of β-adrenergic receptors and, consequently, some G proteins, increased BK channel activity 229 ± 37% in cell-attached patches from cultured GH3 cells. Western blot analysis showed that GH3 cells have β-adrenergic receptor protein and that isoproterenol acts through these receptors because the β-adrenergic receptor antagonist, propanolol, blocks the action of isoproterenol. To test whether G protein activation of BK channels involves c-PLA2, we studied the effects of GTP-γ-S on excised patches and isoproterenol on cell attached patches from GH3 cells previously treated with c-PLA2 antisense oligonucleotides or pharmacological inhibitors of c-PLA2. Neither isoproterenol nor GTP-γ-S had any effect on Po in these patches. Similarly, neither isoproterenol nor GTP-γ-S had any effect on Po in cultured GH3 cells pretreated with pertussis toxin. Isoproterenol also significantly increased the rate of arachidonic production in GH3 cells. These results show that some receptor-linked, pertussis-toxin-sensitive G protein in GH3 cells can activate c-PLA2 to increase the amount of arachidonic acid present and ultimately increase BK-channel activity.


1997 ◽  
Vol 154 (2) ◽  
pp. 201-209 ◽  
Author(s):  
P F Moraga ◽  
M N Llanos ◽  
A M Ronco

Abstract In this work, the involvement of arachidonic acid (AA) in the luteinizing hormone and human chorionic gonadotrophin (LH/hCG) action on Leydig cells was studied. Experiments were first designed to evaluate [14C]AA incorporation into membrane phospholipids. Subsequently, time-course, pulse-chase and dose–response studies of the effect of hCG on [14C]AA release were performed. Results indicated that 4 h was optimal for maximal incorporation of [14C]AA into membrane phospholipids of viable Leydig cells. Pulse-chase experiments and studies performed to evaluate the effect of different doses of hCG on [14C]AA release demonstrated that this hormone stimulates [14C]AA release in a dose–response and time-dependent manner. Furthermore, using a desensitised animal model, a link between the presence of LH/hCG receptors and LH/hCG-stimulated [14C]AA release in Leydig cells could be established. In fact, the amount of [14C]AA released was significantly dependent on, and directly proportional to, the concentration of LH/hCG binding sites. Thus [14C]AA released from intact rat Leydig cells decreased when animals had been previously injected with a high single dose of hCG (desensitised animals), which is known to cause a dramatic decrease in the number of LH/hCG binding sites. These results demonstrate that the mechanism of AA release in Leydig cells depends on LH/hCG–receptor interaction and also suggest that AA could act as an additional intracellular messenger associated with the hormonal action of LH/hCG. Journal of Endocrinology (1997) 154, 201–209


2004 ◽  
Vol 286 (1) ◽  
pp. C22-C30 ◽  
Author(s):  
Chunfa Huang ◽  
Kristine M. Hujer ◽  
Zhenzhen Wu ◽  
R. Tyler Miller

The Ca2+-sensing receptor (CaR) couples to multiple G proteins involved in distinct signaling pathways: Gαi to inhibit the activity of adenylyl cyclase and activate ERK, Gαq to stimulate phospholipase C and phospholipase A2, and Gβγ to stimulate phosphatidylinositol 3-kinase. To determine whether the receptor also couples to Gα12/13, we investigated the signaling pathway by which the CaR regulates phospholipase D (PLD), a known Gα12/13 target. We established Madin-Darby canine kidney (MDCK) cell lines that stably overexpress the wild-type CaR (CaRWT) or the nonfunctional mutant CaRR796W as a negative control, prelabeled these cells with [3H]palmitic acid, and measured CaR-stimulated PLD activity as the formation of [3H]phosphatidylethanol (PEt). The formation of [3H]PEt increased in a time-dependent manner in the cells that overexpress the CaRWT but not the CaRR796W. Treatment of the cells with C3 exoenzyme inhibited PLD activity, which indicates that the CaR activates the Rho family of small G proteins, targets of Gα12/13. To determine which G protein(s) the CaR couples to in order to activate Rho and PLD, we pretreated the cells with pertussis toxin to inactivate Gαi or coexpressed regulators of G protein-signaling (RGS) proteins to attenuate G protein signaling (RGS4 for Gαi and Gαq, and a p115RhoGEF construct containing the RGS domain for Gα12/13). Overexpression of p115RhoGEF-RGS in the MDCK cells that overexpress CaRWT inhibited extracellular Ca2+-stimulated PLD activity, but pretreatment of cells with pertussis toxin and overexpression of RGS4 were without effect. The involvement of other signaling components such as protein kinase C, ADP-ribosylation factor, and phosphatidylinositol biphosphate was excluded. These findings demonstrate that the CaR couples to Gα12/13 to regulate PLD via a Rho-dependent mechanism and does so independently of Gαi and Gαq. This suggests that the CaR may regulate cytoskeleton via Gα12/13, Rho, and PLD.


2011 ◽  
Vol 300 (3) ◽  
pp. L472-L478 ◽  
Author(s):  
Wayne C. H. Wang ◽  
Rachel M. Schillinger ◽  
Molly M. Malone ◽  
Stephen B. Liggett

The limiting component within the receptor-G protein-effector complex in airway smooth muscle (ASM) for β2-adrenergic receptor (β2-AR)-mediated relaxation is unknown. In cardiomyocytes, adenylyl cyclase (AC) is considered the “bottleneck” for β-AR signaling, and gene therapy trials are underway to increase inotropy by increasing cardiac AC expression. We hypothesized that increasing AC in ASM would increase relaxation from β-agonists, thereby providing a strategy for asthma therapy. Transgenic (TG) mice were generated with approximately two- to threefold overexpression of type 5 AC (AC5) in ASM. cAMP and airway relaxation in response to direct activation of AC by forskolin were increased in AC5-TG. Counter to our hypothesis, isoproterenol-mediated airway relaxation was significantly attenuated (∼50%) in AC5-TG, as was cAMP production, suggesting compensatory regulatory events limiting β2-AR signaling when AC expression is increased. In contrast, acetylcholine-mediated contraction was preserved. Gαi expression and ERK1/2 activation were markedly increased in AC5-TG (5- and 8-fold, respectively), and β-AR expression was decreased by ∼40%. Other G proteins, G protein-coupled receptor kinases, and β-arrestins were unaffected. β-agonist-mediated airway relaxation of AC5-TG was normalized to that of nontransgenic mice by pertussis toxin, implicating β2-AR coupling to the increased Gi as a mechanism of depressed agonist-promoted relaxation in these mice. The decrease in β2-AR may account for additional relaxation impairment, given that there is no enhancement over nontransgenic after pertussis toxin, despite AC5 overexpression. ERK1/2 inhibition had no effect on the phenotype. Thus perturbing the ratio of β2-AR to AC in ASM by increasing AC fails to improve (and actually decreases) β-agonist efficacy due to counterregulatory events.


1997 ◽  
Vol 272 (5) ◽  
pp. E870-E876 ◽  
Author(s):  
Z. Strakova ◽  
M. S. Soloff

Occupancy of oxytocin receptor (OTR) binding sites in pregnant rat myometrial membranes with iodinated oxytocin antagonist (OTA), followed by detergent solubilization and size selection, showed that radioactivity eluted in two distinct peaks: one corresponding in size to the isolated receptor (approximately 60 kDa) and the other ranging from 240 to 320 kDa. The unliganded 240- to 320-kDa fraction contained OTRs coupled to G proteins, as the addition of oxytocin (OT) increased guanosine 35S-labeled 5'-O-(3-thiotriphosphate) binding up to twofold in a dose-dependent manner. The effects of OT were blocked by coincubation with OTA. G protein alpha-subunits associated with OTRs in the 240- to 320-kDa peak were identified by immunoadsorption. Significant amounts of both G alpha q/11 and G alpha i3 were associated with the OTR; a lesser amount of G alpha s was complexed. Using the same approach but with antibodies to effector enzymes, we observed that phospholipase C beta 1 (PLC beta 1) and PLA2 were also associated with the OTR. The results corroborate the well-established interaction of OTR with Gq and further show that Gi coupling might be an important component of OTR signal transduction. To further investigate the interaction of Gi with the OTR, we showed that OT stimulation of guanosine 5'-triphosphatase activity in intact myometrial membranes was inhibited by pertussis toxin. Pertussis toxin-stimulated ADP ribosylation of G alpha i in myometrial membranes was also decreased by OT treatment. These findings with pertussis toxin strongly indicate that OTR is coupled to Gi in rat myometrial membranes. The 60-kDa OTR peak (noncoupled receptor) was demonstrable in the myometrium only before the end of gestation and after parturition and accounted for about one-half the 125I-OTA binding activity. At term, there was about a fivefold increase in binding and almost a complete shift to the 240- to 320-kDa-size complex. Thus the established increased sensitivity of the myometrium to OT at term could be the result of both upregulation of OTRs and an increase in the fraction of receptors coupled to signal transduction components, one of which is Gi.


1989 ◽  
Vol 256 (1) ◽  
pp. F57-F62 ◽  
Author(s):  
A. Bertorello ◽  
A. Aperia

This study evaluates the involvement of GTP-dependent regulatory proteins (G-proteins) in the regulation of Na+-K+-ATPase activity in proximal convoluted tubule (PCT) segments. Single PCT segments were dissected from rat kidney and permeabilized to allow nucleotides and medium free access to the interior of the cell. A GDP analogue that blocks GTP-dependent activation of the G-protein, GDP beta S (400 microM) significantly inhibited PCT Na+-K+-ATPase activity when Na in the medium (Nam) was greater than or equal to 70 mM. The inhibition was attenuated when Nam was 55 and 35 mM and was no longer significant when Nam was 25 mM. GDP beta S had no inhibitory effect on the activity of purified Na+-K+-ATPase. A nonhydrolyzable GTP analogue, GppNHp (50 microM) significantly increased Na+-K+-ATPase activity when Nam was 25 and 35 mM, but not when Nam was 55-140 mM. Dopamine (DA) and DA1 plus DA2 agonists significantly inhibit Na+-K+-ATPase activity. DA inhibition was competitively abolished by GppNHp. In PCT segments from rats pretreated with pertussis toxin, DA and DA1 plus DA2 agonist inhibition of Na+-K+-ATPase activity was abolished. In PCT segments from rats pretreated with cholera toxin, basal Na+-K+-ATPase activity was increased, but DA significantly inhibited Na+-K+-ATPase activity. Na+-K+-ATPase activity in PCT segments is regulated via a G-protein that stimulates Na+-K+-ATPase activity and a DA-activated pertussis toxin-sensitive G-protein that inhibits Na+-K+-ATPase activity.(ABSTRACT TRUNCATED AT 250 WORDS)


1995 ◽  
Vol 268 (3) ◽  
pp. F461-F467 ◽  
Author(s):  
O. S. Ruiz ◽  
Y. Y. Qiu ◽  
L. J. Wang ◽  
J. A. Arruda

We examined the regulation of the renal cortical basolateral Na-HCO3 cotransporter by G proteins. Na-HCO3 cotransporter activity was measured in highly purified rabbit renal cortical basolateral membranes (BLMV) as the difference in 22Na uptake in presence of HCO3- and gluconate. HCO(3-)-dependent 22Na uptake was significantly inhibited by 10 microM guanosine 5'-O-(3-thiotriphosphate) (GTP gamma S), a G protein activator. In contrast, addition of 50 microM guanosine 5'-O-(2-thiodiphosphate) (GDP beta S), an inhibitor of G protein, prevented the inhibition of the Na-HCO3 cotransporter activity by GTP gamma S. AlF4-, another G protein activator, also inhibited the activity of the Na-HCO3 cotransporter. This inhibitory effect of G protein on the Na-HCO3 cotransporter activity was not prevented by dideoxyadenosine, an adenylate cyclase inhibitor, or by the protein kinase A inhibitor, suggesting a direct effect of G protein on the cotransporter. To identify the G proteins that mediate the regulation of the Na-HCO3 cotransporter, purified BLMV were ADP ribosylated in presence of cholera toxin or pertussis toxin. Autoradiograms of BLMV incubated with [32P]NAD showed that cholera and pertussis toxins caused ADP ribosylation of 42- and 41-kDa G proteins, respectively. To determine whether the ADP ribosylation by cholera or pertussis toxin was associated with alterations of the Na-HCO3 cotransporter activity, we measured HCO(3-)-dependent 22Na uptake in BLMV treated with 20 micrograms/ml cholera toxin or with 100 ng/ml pertussis toxin. Na-HCO3 cotransporter activity was significantly decreased by both cholera and pertussis toxins.(ABSTRACT TRUNCATED AT 250 WORDS)


Sign in / Sign up

Export Citation Format

Share Document