scholarly journals Glucose stimulates and insulin inhibits release of pancreatic TRH in vitro

2000 ◽  
pp. 60-65 ◽  
Author(s):  
J Benicky ◽  
V Strbak

OBJECTIVE: Pancreatic TRH is present in insulin-producing B-cells of the islets of Langerhans. There is fragmentary evidence that it may be involved in glucoregulation. The aim of our present study was to analyze how glucose and insulin affect TRH secretion by the pancreatic islets. DESIGN: Isolated pancreatic islets were incubated with different concentrations of glucose, insulin and glucagon, and TRH release was measured. RESULTS: In the present study, 6 and 12mmol/l d-glucose caused significant TRH release from isolated adult rat pancreatic islets when compared with that in the presence of the same concentrations of biologically ineffective l-glucose. Thirtymmol/l d-glucose was also ineffective, but this was not due to depression of secretion by hyperosmolarity since isosmotic compensation for the high glucose addition did not restore its stimulatory effect. Five micromol/l dibutyryl cyclic 3',5'-adenosine monophosphate (db-cAMP) increased both basal and glucose-stimulated TRH release, but this effect was not seen with 50micromol/l db-cAMP. Stimulation of phosphodiesterase by imidazole resulted in decreased basal but not glucose-stimulated release of TRH. Glucagon (10(-7)mol/l) did not affect either basal or glucose-stimulated release of TRH, while insulin (10(-7) and 10(-6)mol/l) inhibited both. CONCLUSION: Our present data showing that glucose stimulates and insulin inhibits pancreatic TRH release are compatible with the possibility that this substance may play a role in glucoregulation.

Author(s):  
F. B. P. Wooding ◽  
K. Pedley ◽  
N. Freinkel ◽  
R. M. C. Dawson

Freinkel et al (1974) demonstrated that isolated perifused rat pancreatic islets reproduceably release up to 50% of their total inorganic phosphate when the concentration of glucose in the perifusion medium is raised.Using a slight modification of the Libanati and Tandler (1969) method for localising inorganic phosphate by fixation-precipitation with glutaraldehyde-lead acetate we can demonstrate there is a significant deposition of lead phosphate (identified by energy dispersive electron microscope microanalysis) at or on the plasmalemma of the B cell of the islets (Fig 1, 3). Islets after incubation in high glucose show very little precipitate at this or any other site (Fig 2). At higher magnification the precipitate seems to be intracellular (Fig 4) but since any use of osmium or uranyl acetate to increase membrane contrast removes the precipitate of lead phosphate it has not been possible to verify this as yet.


1975 ◽  
Vol 142 (5) ◽  
pp. 1327-1333 ◽  
Author(s):  
G Opelz ◽  
M Kiuchi ◽  
M Takasugi ◽  
P I Terasaki

The background stimulation universally seen when lymphocytes are cultured in vitro has been shown to be markedly lowered by reducing the proportion of B lymphocytes. B-rich fractions of lymphocytes had extremely high background stimulation. It is concluded that stimulation of T cells, probably by autologous B cells, provides the most probable explanation for the findings described.


1990 ◽  
Vol 258 (6) ◽  
pp. E975-E984 ◽  
Author(s):  
G. Z. Fadda ◽  
M. Akmal ◽  
L. G. Lipson ◽  
S. G. Massry

Indirect evidence indicates that parathyroid hormone (PTH) interacts with pancreatic islets and modulates their insulin secretion. This property of PTH has been implicated in the genesis of impaired insulin release in chronic renal failure. We examined the direct effect of PTH-(1-84) and PTH-(1-34) on insulin release using in vitro static incubation and dynamic perifusion of pancreatic islets from normal rats. Both moieties of the hormone stimulated in a dose-dependent manner glucose-induced insulin release but higher doses inhibited glucose-induced insulin release. This action of PTH was modulated by the calcium concentration in the media. The stimulatory effect of PTH was abolished by its inactivation and blocked by its antagonist [Tyr-34]bPTH-(7-34)NH2. PTH also augmented phorbol ester (TPA)-induced insulin release, stimulated adenosine 3',5'-cyclic monophosphate (cAMP) generation by pancreatic islets, and significantly increased (+50 +/- 2.7%, P less than 0.01) their cytosolic calcium. Verapamil inhibited the stimulatory effect of PTH on insulin release. The data show that 1) pancreatic islets are a PTH target and may have PTH receptors, 2) stimulation of glucose-induced insulin release by PTH is mediated by a rise in cytosolic calcium, 3) stimulation of cAMP production by PTH and a potential indirect activation of protein kinase C by PTH may also contribute to the stimulatory effect on glucose-induced insulin release, and 4) this action of PTH requires calcium in incubation or perifusion media.


2007 ◽  
Vol 192 (2) ◽  
pp. 389-394 ◽  
Author(s):  
Nguyen Khanh Hoa ◽  
Åke Norberg ◽  
Rannar Sillard ◽  
Dao Van Phan ◽  
Nguyen Duy Thuan ◽  
...  

We recently showed that phanoside, a gypenoside isolated from the plant Gynostemma pentaphyllum, stimulates insulin secretion from rat pancreatic islets. To study the mechanisms by which phanoside stimulates insulin secretion. Isolated pancreatic islets of normal Wistar (W) rats and spontaneously diabetic Goto-Kakizaki (GK) rats were batch incubated or perifused. At both 3.3 and 16.7 mM glucose, phanoside stimulated insulin secretion several fold in both W and diabetic GK rat islets. In perifusion of W islets, phanoside (75 and 150 μM) dose dependently increased insulin secretion that returned to basal levels when phanoside was omitted. When W rat islets were incubated at 3.3 mM glucose with 150 μM phanoside and 0.25 mM diazoxide to keep K-ATP channels open, insulin secretion was similar to that in islets incubated in 150 μM phanoside alone. At 16.7 mM glucose, phanoside-stimulated insulin secretion was reduced in the presence of 0.25 mM diazoxide (P<0.01). In W islets depolarized by 50 mM KCl and with diazoxide, phanoside stimulated insulin release twofold at 3.3 mM glucose but did not further increase the release at 16.7 mM glucose. When using nimodipine to block L-type Ca2+ channels in B-cells, phanoside-induced insulin secretion was unaffected at 3.3 mM glucose but decreased at 16.7 mM glucose (P<0.01). Pretreatment of islets with pertussis toxin to inhibit exocytotic Ge-protein did not affect insulin response to 150 μM phanoside. Phanoside stimulated insulin secretion from Wand GK rat islets. This effect seems to be exerted distal to K-ATP channels and L-type Ca2+ channels, which is on the exocytotic machinery of the B-cells.


1974 ◽  
Vol 140 (3) ◽  
pp. 377-382 ◽  
Author(s):  
Arne Andersson

Rates of glucose oxidation and insulin release in response to a wide range of glucose concentrations were studied in short-term experiments in isolated mouse pancreatic islets maintained in tissue culture for 6 days at either a physiological glucose concentration (6.7mm) or at a high glucose concentration (28mm). The curves relating glucose oxidation or insulin release to the extracellular glucose concentration obtained with islets cultured in 6.7mm-glucose displayed a sigmoid shape similar to that observed for freshly isolated non-cultured islets. By contrast islets that had been cultured in 28mm-glucose showed a linear relationship between the rate of glucose oxidation and the extracellular glucose concentration up to about 8mm-glucose. The maximal oxidative rate was twice that of the non-cultured islets and the glucose concentration associated with the half-maximal rate considerably decreased. In islets cultured at 28mm-glucose there was only a small increase in the insulin release in response to glucose, probably due to a depletion of stored insulin in those B cells that had been cultured in a high-glucose medium. It is concluded that exposure of B cells for 6 days to a glucose concentration comparable with that found in diabetic individuals causes adaptive metabolic alterations rather than degeneration of these cells.


Author(s):  
Huabin Zhu ◽  
Chen Jiang ◽  
Randal J. Kaufman ◽  
Honglin Li ◽  
Nagendra Singh
Keyword(s):  
B Cells ◽  

1988 ◽  
Vol 12 (2) ◽  
pp. 109-111 ◽  
Author(s):  
Andries C. Bloem ◽  
M.Anwar Chand ◽  
Mohamed R. Daha ◽  
Bert J.E.G. Bast ◽  
Rudy E. Ballieux

2013 ◽  
Vol 14 (1) ◽  
pp. 24 ◽  
Author(s):  
Jian Chen ◽  
Yang Guo ◽  
Wei Cheng ◽  
Ruiqing Chen ◽  
Tianzhu Liu ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document