scholarly journals Protein arginine methyltransferase 6-dependent gene expression and splicing: association with breast cancer outcomes

2012 ◽  
Vol 19 (4) ◽  
pp. 509-526 ◽  
Author(s):  
Dennis H Dowhan ◽  
Matthew J Harrison ◽  
Natalie A Eriksson ◽  
Peter Bailey ◽  
Michael A Pearen ◽  
...  

Protein arginine methyltransferase-6 (PRMT6) regulates steroid-dependent transcription and alternative splicing and is implicated in endocrine system development and function, cell death, cell cycle, gene expression and cancer. Despite its role in these processes, little is known about its function and cellular targets in breast cancer. To identify novel gene targets regulated by PRMT6 in breast cancer cells, we used a combination of small interfering RNA and exon-specific microarray profilingin vitrocoupled toin vivovalidation in normal breast and primary human breast tumours. This approach, which allows the examination of genome-wide changes in individual exon usage and total transcript levels, demonstrated thatPRMT6knockdown significantly affected i) the transcription of 159 genes and ii) alternate splicing of 449 genes. ThePRMT6-dependent transcriptional and alternative splicing targets identifiedin vitrowere validated in human breast tumours. Using the list of genes differentially expressed between normal andPRMT6knockdown cells, we generated aPRMT6-dependent gene expression signature that provides an indication of PRMT6 dysfunction in breast cancer cells. Interrogation of several well-studied breast cancer microarray expression datasets with thePRMT6gene expression signature demonstrated that PRMT6 dysfunction is associated with better overall relapse-free and distant metastasis-free survival in the oestrogen receptor (ER (ESR1)) breast cancer subgroup. These results suggest that dysregulation ofPRMT6-dependent transcription and alternative splicing may be involved in breast cancer pathophysiology and the molecular consequences identifying a unique and informative biomarker profile.

2018 ◽  
Vol 16 (2) ◽  
pp. 127-137
Author(s):  
Paula Sofia Coutinho Medeiros ◽  
Ana Lúcia Marques Batista de Carvalho ◽  
Cristina Ruano ◽  
Juan Carlos Otero ◽  
Maria Paula Matos Marques

Background: The impact of the ubiquitous dietary phenolic compound p-coumaric acid on human breast cancer cells was assessed, through a multidisciplinary approach: Combined biological assays for cytotoxicity evaluation and biochemical profiling by Raman microspectroscopic analysis in cells. </P><P> Methods: Para-coumaric acid was shown to exert in vitro chemoprotective and antitumor activities, depending on the concentration and cell line probed: a significant anti-invasive ability was detected for the triple-negative MDA-MB-231 cells, while a high pro-oxidant effect was found for the estrogen- dependent MCF-7 cells. A striking cell selectivity was obtained, with a more noticeable outcome on the triple-negative MDA-MB-231 cell line. Results: The main impact on the cellular biochemical profile was verified to be on proteins and lipids, thus justifying the compound´s anti-invasive effect and chemoprotective ability. Conclusion: p-Coumaric acid was thus shown to be a promising chemoprotective/chemotherapeutic agent, particularly against the low prognosis triple-negative human breast adenocarcinoma.


1998 ◽  
Vol 55 (6) ◽  
pp. 841-851 ◽  
Author(s):  
R.Jeffrey Baumann ◽  
Tammy L. Bush ◽  
Doreen E. Cross-Doersen ◽  
Elizabeth A. Cashman ◽  
Paul S. Wright ◽  
...  

2011 ◽  
Vol 10 (1) ◽  
pp. 135 ◽  
Author(s):  
Yusuke Yamamoto ◽  
Yusuke Yoshioka ◽  
Kaho Minoura ◽  
Ryou-u Takahashi ◽  
Fumitaka Takeshita ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document