scholarly journals Free fatty acid receptor 2, a candidate target for type 1 diabetes, induces cell apoptosis through ERK signaling

2014 ◽  
Vol 53 (3) ◽  
pp. 367-380 ◽  
Author(s):  
Guojun Shi ◽  
Chen Sun ◽  
Weiqiong Gu ◽  
Minglan Yang ◽  
Xiaofang Zhang ◽  
...  

Recent reports have highlighted the roles of free fatty acid receptor 2 (FFAR2) in the regulation of metabolic and inflammatory processes. However, the potential function of FFAR2 in type 1 diabetes (T1D) remains unexplored. Our results indicated that the mRNA level of FFAR2 was upregulated in peripheral blood mononuclear cells of T1D patients. The human FFAR2 promoter regions were cloned, and luciferase reporter assays revealed that NFκB activation induced FFAR2 expression. Furthermore, we showed that FFAR2 activation by overexpression induced cell apoptosis through ERK signaling. Finally, treatment with the FFAR2 agonists acetate or phenylacetamide 1 attenuated the inflammatory response in multiple-low-dose streptozocin-induced diabetic mice, and improved the impaired glucose tolerance. These results indicate that FFAR2 may play a protective role by inducing apoptosis of infiltrated macrophage in the pancreas through its feedback upregulation and activation, thus, in turn, improving glucose homeostasis in diabetic mice. These findings highlight FFAR2 as a potential therapeutic target of T1D, representing a link between immune response and glucose homeostasis.

2019 ◽  
Vol 33 (S1) ◽  
Author(s):  
Tyler Cook ◽  
Raiza Bonomo ◽  
Chaitanya Gavini ◽  
Laurent Gautron ◽  
Brian Layden ◽  
...  

2020 ◽  
Vol 393 (10) ◽  
pp. 1797-1808
Author(s):  
Shaimaa H. El-Fayoumi ◽  
Amr A. A. Mahmoud ◽  
Ahmed Fahmy ◽  
Islam A. A. E.-H. Ibrahim

Hippocampus ◽  
2008 ◽  
Vol 18 (3) ◽  
pp. 326-333 ◽  
Author(s):  
Dexuan Ma ◽  
Li Lu ◽  
Nadezhda B. Boneva ◽  
Shogo Warashina ◽  
Desislav B. Kaplamadzhiev ◽  
...  

2021 ◽  
Vol 12 ◽  
Author(s):  
Mengjiao Wu ◽  
Qingfei Li ◽  
Kangsen Mai ◽  
Qinghui Ai

Free fatty acid receptor 4 (FFAR4) plays a key role in regulating the inflammatory response in mammals. The present study aimed to investigate the function of large yellow croaker FFAR4 on inflammation. In the present study, ffar4 was widely expressed in 10 tissues of large yellow croaker including gill, head kidney and spleen. Further studies showed that treatment of head kidney macrophages with agonists (TUG891 or GSK137647A) or overexpression of ffar4 reduced the mRNA expression of pro-inflammatory genes induced by LPS, and increased the expression of pparγ. Treatment of macrophages with antagonist AH7614 increased the mRNA expression of pro-inflammatory genes induced by LPS, and decreased the mRNA expression of pparγ. In order to verify the immunomodulatory effect of PPARγ, PPARγ was overexpressed in macrophages which significantly reduced the mRNA expression of pro-inflammatory genes il6, il1β, il8, tnfα and cox2. Moreover, results of dual-luciferase assays showed that PPARγ downregulated the transcriptional activity of il6 and il1β promoters. In conclusion, FFAR4 showed anti-inflammatory effects on LPS-induced inflammation in large yellow croaker.


Sign in / Sign up

Export Citation Format

Share Document