scholarly journals In vitro DNA-binding profile of transcription factors: methods and new insights

2011 ◽  
Vol 210 (1) ◽  
pp. 15-27 ◽  
Author(s):  
Jinke Wang ◽  
Jie Lu ◽  
Guangming Gu ◽  
Yingxun Liu

The DNA-binding specificity of transcription factors (TFs) has broad impacts on cell physiology, cell development and in evolution. However, the DNA-binding specificity of most known TFs still remains unknown. The specificity of a TF protein is determined by its relative affinity to all possible binding sites. In recent years, the development of several in vitro techniques permits high-throughput determination of relative binding affinity of a TF to all possible k bp-long DNA sequences, thus greatly promoting the characterization of DNA-binding specificity of many known TFs. All DNA sequences that can be bound by a TF with various binding affinities form their DNA-binding profile (DBP). The DBP is important to generate an accurate DNA-binding model, identify all DNA-binding sites and target genes of TFs in the whole genome, and build transcription regulatory network. This study reviewed these techniques, especially two master techniques: double-stranded DNA microarray and systematic evolution of ligands by exponential enrichment in combination with parallel DNA sequencing techniques (SELEX-seq).

2018 ◽  
Author(s):  
Arya Zandvakili ◽  
Juli Uhl ◽  
Ian Campbell ◽  
Yuntao Charlie Song ◽  
Brian Gebelein

AbstractHox genes encode a family of transcription factors that, despite having similar in vitro DNA binding preferences, regulate distinct genetic programs along the metazoan anterior-posterior axis. To better define mechanisms of Hox specificity, we compared and contrasted the ability of abdominal Hox factors to regulate two cis-regulatory elements within the Drosophila embryo. Both the Ultrabithorax (Ubx) and Abdominal-A (Abd-A) Hox factors form cooperative complexes with the Extradenticle (Exd) and Homothorax (Hth) transcription factors to repress the distal-less leg selector gene via the DCRE, whereas only Abd-A interacts with Exd and Hth on the RhoA element to activate a rhomboid serine protease gene that stimulates Epidermal Growth Factor secretion. By swapping binding sites between these elements, we found that the RhoA Exd/Hth/Hox site configuration that mediates Abd-A specific activation can also convey transcriptional repression by both Ubx and Abd-A when placed into the DCRE, but only in one orientation. We further show that the orientation and spacing of Hox sites relative to additional transcription factor binding sites within the RhoA and DCRE elements is critical to mediate appropriate cell- and segment-specific output. These results indicate that the interaction between Hox, Exd, and Hth neither determines activation vs repression specificity nor defines Ubx vs Abd-A specificity. Instead the precise integration of Hox sites with additional TF inputs is required for accurate transcriptional output. Taken together, these studies provide new insight into the mechanisms of Hox target and regulatory specificity as well as the constraints placed on regulatory elements to convey appropriate outputs.Author SummaryThe Hox genes encode a family of transcription factors that give cells within each region along the developing body plan a unique identity in animals from worms to mammals. Surprisingly, however, most of the Hox factors bind the same or highly similar DNA sequences. These findings raise a paradox: How can proteins that have highly similar DNA binding properties perform different functions in the animal by regulating different sets of target genes? In this study, we address this question by studying how two Hox factors regulate the expression of target genes that specify leg development and the making of liver-like cells in the developing fly. By comparing and contrasting how Hox target genes are activated and/or repressed, we found that the same Hox binding sites can mediate either activation or repression in a manner that depends upon context. In addition, we found that a Hox binding site that is normally regulated by only one Hox factor, can also be used by more than one Hox factor swapped into another target gene. These findings indicate that the specificity of a Hox factor to regulate target genes does not rely solely upon DNA binding specificity but also requires regulatory specificity.


2013 ◽  
Vol 42 (4) ◽  
pp. 2138-2146 ◽  
Author(s):  
Jose M. Muiño ◽  
Cezary Smaczniak ◽  
Gerco C. Angenent ◽  
Kerstin Kaufmann ◽  
Aalt D.J. van Dijk

Abstract Plant MADS-domain transcription factors act as key regulators of many developmental processes. Despite the wealth of information that exists about these factors, the mechanisms by which they recognize their cognate DNA-binding site, called CArG-box (consensus CCW6GG), and how different MADS-domain proteins achieve DNA-binding specificity, are still largely unknown. We used information from in vivo ChIP-seq experiments, in vitro DNA-binding data and evolutionary conservation to address these important questions. We found that structural characteristics of the DNA play an important role in the DNA binding of plant MADS-domain proteins. The central region of the CArG-box largely resembles a structural motif called ‘A-tract’, which is characterized by a narrow minor groove and may assist bending of the DNA by MADS-domain proteins. Periodically spaced A-tracts outside the CArG-box suggest additional roles for this structure in the process of DNA binding of these transcription factors. Structural characteristics of the CArG-box not only play an important role in DNA-binding site recognition of MADS-domain proteins, but also partly explain differences in DNA-binding specificity of different members of this transcription factor family and their heteromeric complexes.


2018 ◽  
Author(s):  
Bethany J. Madison ◽  
Kathleen A. Clark ◽  
Niraja Bhachech ◽  
Peter C. Hollenhorst ◽  
Barbara J. Graves ◽  
...  

AbstractMany transcription factors regulate gene expression in a combinatorial fashion often by binding in close proximity on composite cis-regulatory DNA elements. Here we investigate the molecular basis by which ETS transcription factors bind with AP1 transcription factors JUN-FOS at composite DNA-binding sites. The ability to bind to DNA with JUN-FOS correlates with the phenotype of these proteins in prostate cancer: the oncogenic ERG and ETV1/4/5 subfamilies co-occupy ETS-AP1 sites with JUN-FOS in vitro, whereas JUN-FOS robustly inhibits DNA binding by the tumor suppressors EHF and SPDEF. EHF binds to ETS-AP1 DNA with tighter affinity than ERG in the absence of JUN-FOS, which may enable EHF to compete with ERG and JUN-FOS for binding to ETS-AP1 sites. Genome-wide mapping of EHF and ERG binding sites in a prostate epithelial cell line reveal that EHF is preferentially excluded from closely spaced ETS-AP1 DNA sequences. Structural modeling and mutational analyses indicate that adjacent positively-charged surfaces from EHF and JUN-FOS disfavor simultaneous DNA binding due to electrostatic repulsion. The conservation of positively charged residues on the JUN-FOS interface identified ELF1 as an additional ETS factor that exhibits anticooperative DNA binding, and we present evidence that ELF1 is frequently downregulated in prostate cancer. In summary, the divergence of electrostatic features of ETS factors at their JUN-FOS interface enables distinct binding events at ETS-AP1 DNA sequences. We propose that this mechanism can drive unique targeting of ETS transcription factors, thereby facilitating distinct transcriptional programs.


2019 ◽  
Vol 47 (19) ◽  
pp. 9967-9989 ◽  
Author(s):  
Maria Carmen Mulero ◽  
Vivien Ya-Fan Wang ◽  
Tom Huxford ◽  
Gourisankar Ghosh

Abstract The NF-κB family of dimeric transcription factors regulates transcription by selectively binding to DNA response elements present within promoters or enhancers of target genes. The DNA response elements, collectively known as κB sites or κB DNA, share the consensus 5′-GGGRNNNYCC-3′ (where R, Y and N are purine, pyrimidine and any nucleotide base, respectively). In addition, several DNA sequences that deviate significantly from the consensus have been shown to accommodate binding by NF-κB dimers. X-ray crystal structures of NF-κB in complex with diverse κB DNA have helped elucidate the chemical principles that underlie target selection in vitro. However, NF-κB dimers encounter additional impediments to selective DNA binding in vivo. Work carried out during the past decades has identified some of the barriers to sequence selective DNA target binding within the context of chromatin and suggests possible mechanisms by which NF-κB might overcome these obstacles. In this review, we first highlight structural features of NF-κB:DNA complexes and how distinctive features of NF-κB proteins and DNA sequences contribute to specific complex formation. We then discuss how native NF-κB dimers identify DNA binding targets in the nucleus with support from additional factors and how post-translational modifications enable NF-κB to selectively bind κB sites in vivo.


1993 ◽  
Vol 13 (4) ◽  
pp. 2354-2365
Author(s):  
K M Catron ◽  
N Iler ◽  
C Abate

Murine homeobox genes play a fundamental role in directing embryogenesis by controlling gene expression during development. The homeobox encodes a DNA binding domain (the homeodomain) which presumably mediates interactions of homeodomain proteins with specific DNA sites in the control regions of target genes. However, the bases for these selective DNA-protein interactions are not well defined. In this report, we have characterized the DNA binding specificities of three murine homeodomain proteins, Hox 7.1, Hox 1.5, and En-1. We have identified optimal DNA binding sites for each of these proteins by using a random oligonucleotide selection strategy. Comparison of the sequences of the selected binding sites predicted a common consensus site that contained the motif (C/G)TAATTG. The TAAT core was essential for DNA binding activity, and the nucleotides flanking this core directed binding specificity. Whereas variations in the nucleotides flanking the 5' side of the TAAT core produced modest alterations in binding activity for all three proteins, perturbations of the nucleotides directly 3' of the core distinguished the binding specificity of Hox 1.5 from those of Hox 7.1 and En-1. These differences in binding activity reflected differences in the dissociation rates rather than the equilibrium constants of the protein-DNA complexes. Differences in DNA binding specificities observed in vitro may contribute to selective interactions of homeodomain proteins with potential binding sites in the control regions of target genes.


1993 ◽  
Vol 13 (4) ◽  
pp. 2354-2365 ◽  
Author(s):  
K M Catron ◽  
N Iler ◽  
C Abate

Murine homeobox genes play a fundamental role in directing embryogenesis by controlling gene expression during development. The homeobox encodes a DNA binding domain (the homeodomain) which presumably mediates interactions of homeodomain proteins with specific DNA sites in the control regions of target genes. However, the bases for these selective DNA-protein interactions are not well defined. In this report, we have characterized the DNA binding specificities of three murine homeodomain proteins, Hox 7.1, Hox 1.5, and En-1. We have identified optimal DNA binding sites for each of these proteins by using a random oligonucleotide selection strategy. Comparison of the sequences of the selected binding sites predicted a common consensus site that contained the motif (C/G)TAATTG. The TAAT core was essential for DNA binding activity, and the nucleotides flanking this core directed binding specificity. Whereas variations in the nucleotides flanking the 5' side of the TAAT core produced modest alterations in binding activity for all three proteins, perturbations of the nucleotides directly 3' of the core distinguished the binding specificity of Hox 1.5 from those of Hox 7.1 and En-1. These differences in binding activity reflected differences in the dissociation rates rather than the equilibrium constants of the protein-DNA complexes. Differences in DNA binding specificities observed in vitro may contribute to selective interactions of homeodomain proteins with potential binding sites in the control regions of target genes.


Cell Reports ◽  
2013 ◽  
Vol 3 (4) ◽  
pp. 1093-1104 ◽  
Author(s):  
Raluca Gordân ◽  
Ning Shen ◽  
Iris Dror ◽  
Tianyin Zhou ◽  
John Horton ◽  
...  

Development ◽  
2001 ◽  
Vol 128 (17) ◽  
pp. 3295-3305 ◽  
Author(s):  
Georg Halder ◽  
Sean B. Carroll

The formation and identity of organs and appendages are regulated by specific selector genes that encode transcription factors that regulate potentially large sets of target genes. The DNA-binding domains of selector proteins often exhibit relatively low DNA-binding specificity in vitro. It is not understood how the target selectivity of most selector proteins is determined in vivo. The Scalloped selector protein controls wing development in Drosophila by regulating the expression of numerous target genes and forming a complex with the Vestigial protein. We show that binding of Vestigial to Scalloped switches the DNA-binding selectivity of Scalloped. Two conserved domains of the Vestigial protein that are not required for Scalloped binding in solution are required for the formation of the heterotetrameric Vestigial-Scalloped complex on DNA. We suggest that Vestigial affects the conformation of Scalloped to create a wing cell-specific DNA-binding selectivity. The modification of selector protein DNA-binding specificity by co-factors appears to be a general mechanism for regulating their target selectivity in vivo.


1998 ◽  
Vol 18 (7) ◽  
pp. 4079-4088 ◽  
Author(s):  
Ingemar Pongratz ◽  
Camilla Antonsson ◽  
Murray L. Whitelaw ◽  
Lorenz Poellinger

ABSTRACT The dioxin receptor is a ligand-regulated transcription factor that mediates signal transduction by dioxin and related environmental pollutants. The receptor belongs to the basic helix-loop-helix (bHLH)–Per-Arnt-Sim (PAS) family of factors, which, in addition to the bHLH motif, contain a PAS region of homology. Upon activation, the dioxin receptor dimerizes with the bHLH-PAS factor Arnt, enabling the receptor to recognize xenobiotic response elements in the vicinity of target genes. We have studied the role of the PAS domain in dimerization and DNA binding specificity of the dioxin receptor and Arnt by monitoring the abilities of the individual bHLH domains and different bHLH-PAS fragments to dimerize and bind DNA in vitro and recognize target genes in vivo. The minimal bHLH domain of the dioxin receptor formed homodimeric complexes, heterodimerized with full-length Arnt, and together with Arnt was sufficient for recognition of target DNA in vitro and in vivo. In a similar fashion, only the bHLH domain of Arnt was necessary for DNA binding specificity in the presence of the dioxin receptor bHLH domain. Moreover, the bHLH domain of the dioxin receptor displayed a broad dimerization potential, as manifested by complex formation with, e.g., the unrelated bHLH-Zip transcription factor USF. In contrast, a construct spanning the dioxin receptor bHLH domain and an N-terminal portion of the PAS domain failed to form homodimers and was capable of dimerizing only with Arnt. Thus, the PAS domain is essential to confer dimerization specificity of the dioxin receptor.


Sign in / Sign up

Export Citation Format

Share Document