selector protein
Recently Published Documents


TOTAL DOCUMENTS

5
(FIVE YEARS 0)

H-INDEX

2
(FIVE YEARS 0)

Genome ◽  
2010 ◽  
Vol 53 (8) ◽  
pp. 575-584 ◽  
Author(s):  
A. Garg ◽  
J. Bell

Selector proteins are transcription factors that coordinate the formation and identity of organs and appendages. The proper formation of these tissues requires the selector proteins to regulate the expression of a large set of genes. Many selector proteins are involved in regulating multiple developmental processes, yet it is not completely clear how they are able to activate different sets of genes in a tissue-specific manner. An association with cofactors is thought to be one method by which enhancer selectivity is achieved. During wing development the selector protein Scalloped (SD) interacts with the cofactor Vestigial (VG). This interaction leads to the activation of a specific set of downstream wing genes. Herein, data are presented indicating that the switch in binding selectivity is likely achieved by VG altering the general affinity that the SD protein has for DNA. The decreased affinity for DNA is compensated for by the fact that the VG protein forms a complex containing two SD proteins. These two properties ensure that the SD–VG complex is able to bind only to enhancers that have two consecutive binding sites. Furthermore, data are presented that indicate that the function of the two terminal domains of the VG protein is not restricted to activating transcription and promoting the recruitment of two SD proteins.


2008 ◽  
Vol 10 (5) ◽  
pp. 537-545 ◽  
Author(s):  
Chris Todd Hittinger ◽  
Sean B. Carroll
Keyword(s):  

Blood ◽  
2006 ◽  
Vol 108 (11) ◽  
pp. 1599-1599
Author(s):  
Ruiqiong Wu ◽  
Aurelie Desgardin ◽  
Stephen M. Jane ◽  
John M. Cunningham

Abstract Understanding the molecular mechanisms that regulate γ-globin gene expression is essential for development of new therapeutic strategies for individuals with sickle cell disease and β-thalassemia. We have previously identified a tissue- and developmentally- specific multiprotein transacting factor complex, the human stage selector protein (SSP), which facilitates the interaction of the g-globin gene promoters with the upstream locus control region enhancer in fetal erythoid cells. This complex interacts with the stage selector element (SSE) in the proximal g-globin promoter, a regulatory motif phylogenetically conserved in primate species with a distinct fetal stage of β-globin like gene expression. Given these observations, we hypothesized that a similar complex modulates γ-globin in the rhesus macaque, a non-human primate model that has been utilized to study β-globin like gene expression. We focused our efforts on NF-E4, given that a human isoform of this factor confers erythroid and fetal specificity to the SSP complex. Fetal liver erythroblasts were obtained from rhesus embryos and analyzed by reverse transcriptase(RT)-PCR analysis for NF-E4 expression. NF-E4 like transcripts were identified in day 60, 80 and 120 embryonic erythroblasts, but not other rhesus tissues, demonstrating an erythroid-specific pattern of expression. Utilizing 5′ RACE, we cloned a full length NF-E4 transcript, identifying an open reading frame encoding a 131 amino acid polypeptide. This 20kD polypeptide shares a high degree of homology with human NF-E4, especially in its carboxy-terminal domain. Like human NF-E4, GST pulldown chromatography confirmed the ability of the rhesus factor to interact directly with CP2 and ALY, the other core components of the SSP. To evaluate rNF-E4 function in vivo, we utilized retrovirally mediated gene transfer to enforce expression of this factor in K562 cells, a model of human fetal erythropoiesis. Initial co-immunoprecipitation studies confirmed the in vivo interaction of rNF-E4 with other components of the SSP. Interestingly, we observed a specific 3-fold induction of γ-globin gene expression in rNF-E4 expressing cells when compared to controls. Moreover, we demonstrated that, like enforced expression of human NF-E4, rNF-E4 induced a significant increase in ε-globin gene expression. Taken together, our results suggest a conservation of NF-E4 expression and function in species with a fetal stage of globin gene expression. Moreover, the identification of rNF-E4 provides a platform for the pre-clinical development of therapeutic agents that induce high levels of NF-E4 in adult erythroblasts.


Development ◽  
2001 ◽  
Vol 128 (17) ◽  
pp. 3295-3305 ◽  
Author(s):  
Georg Halder ◽  
Sean B. Carroll

The formation and identity of organs and appendages are regulated by specific selector genes that encode transcription factors that regulate potentially large sets of target genes. The DNA-binding domains of selector proteins often exhibit relatively low DNA-binding specificity in vitro. It is not understood how the target selectivity of most selector proteins is determined in vivo. The Scalloped selector protein controls wing development in Drosophila by regulating the expression of numerous target genes and forming a complex with the Vestigial protein. We show that binding of Vestigial to Scalloped switches the DNA-binding selectivity of Scalloped. Two conserved domains of the Vestigial protein that are not required for Scalloped binding in solution are required for the formation of the heterotetrameric Vestigial-Scalloped complex on DNA. We suggest that Vestigial affects the conformation of Scalloped to create a wing cell-specific DNA-binding selectivity. The modification of selector protein DNA-binding specificity by co-factors appears to be a general mechanism for regulating their target selectivity in vivo.


Sign in / Sign up

Export Citation Format

Share Document