scholarly journals Angiotensin-converting enzyme 2, angiotensin-(1–7) and Mas: new players of the renin–angiotensin system

2012 ◽  
Vol 216 (2) ◽  
pp. R1-R17 ◽  
Author(s):  
Robson A S Santos ◽  
Anderson J Ferreira ◽  
Thiago Verano-Braga ◽  
Michael Bader

Angiotensin (Ang)-(1–7) is now recognized as a biologically active component of the renin–angiotensin system (RAS). Ang-(1–7) appears to play a central role in the RAS because it exerts a vast array of actions, many of them opposite to those attributed to the main effector peptide of the RAS, Ang II. The discovery of the Ang-converting enzyme (ACE) homolog ACE2 brought to light an important metabolic pathway responsible for Ang-(1–7) synthesis. This enzyme can form Ang-(1–7) from Ang II or less efficiently through hydrolysis of Ang I to Ang-(1–9) with subsequent Ang-(1–7) formation by ACE. In addition, it is now well established that the G protein-coupled receptor Mas is a functional binding site for Ang-(1–7). Thus, the axis formed by ACE2/Ang-(1–7)/Mas appears to represent an endogenous counterregulatory pathway within the RAS, the actions of which are in opposition to the vasoconstrictor/proliferative arm of the RAS consisting of ACE, Ang II, and AT1receptor. In this brief review, we will discuss recent findings related to the biological role of the ACE2/Ang-(1–7)/Mas arm in the cardiovascular and renal systems, as well as in metabolism. In addition, we will highlight the potential interactions of Ang-(1–7) and Mas with AT1and AT2receptors.

2012 ◽  
Vol 2012 ◽  
pp. 1-13 ◽  
Author(s):  
Anderson J. Ferreira ◽  
Tatiane M. Murça ◽  
Rodrigo A. Fraga-Silva ◽  
Carlos Henrique Castro ◽  
Mohan K. Raizada ◽  
...  

Angiotensin (Ang)-(1–7) is now recognized as a biologically active component of the renin-angiotensin system (RAS). The discovery of the angiotensin-converting enzyme homologue ACE2 revealed important metabolic pathways involved in the Ang-(1–7) synthesis. This enzyme can form Ang-(1–7) from Ang II or less efficiently through hydrolysis of Ang I to Ang-(1–9) with subsequent Ang-(1–7) formation. Additionally, it is well established that the G protein-coupled receptor Mas is a functional ligand site for Ang-(1–7). The axis formed by ACE2/Ang-(1–7)/Mas represents an endogenous counter regulatory pathway within the RAS whose actions are opposite to the vasoconstrictor/proliferative arm of the RAS constituted by ACE/Ang II/AT1receptor. In this review we will discuss recent findings concerning the biological role of the ACE2/Ang-(1–7)/Mas arm in the cardiovascular and pulmonary system. Also, we will highlight the initiatives to develop potential therapeutic strategies based on this axis.


2010 ◽  
Vol 298 (6) ◽  
pp. F1297-F1305 ◽  
Author(s):  
Carlos M. Ferrario ◽  
Jasmina Varagic

The study of experimental hypertension and the development of drugs with selective inhibitory effects on the enzymes and receptors constituting the components of the circulating and tissue renin-angiotensin systems have led to newer concepts of how this system participates in both physiology and pathology. Over the last decade, a renewed emphasis on understanding the role of angiotensin-(1–7) and angiotensin-converting enzyme 2 in the regulation of blood pressure and renal function has shed new light on the complexity of the mechanisms by which these components of the renin angiotensin system act in the heart and in the kidneys to exert a negative regulatory influence on angiotensin converting enzyme and angiotensin II. The vasodepressor axis composed of angiotensin-(1–7)/angiotensin-converting enzyme 2/mas receptor emerges as a site for therapeutic interventions within the renin-angiotensin system. This review summarizes the evolving knowledge of the counterregulatory arm of the renin-angiotensin system in the control of nephron function and renal disease.


2021 ◽  
pp. S177-S194
Author(s):  
J ZLACKÁ ◽  
K STEBELOVÁ ◽  
M ZEMAN ◽  
I HERICHOVÁ

Angiotensin-converting enzyme 2 (ACE2) was identified as a molecule that mediates the cellular entry of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2). Several membrane molecules of the host cell must cooperate in this process. While ACE2 serves in a membrane receptor-mediating interaction with the surface spike (S) glycoprotein of SARS-CoV-2 located on the virus envelope, enzyme A disintegrin and metalloproteinase 17 (ADAM17) regulates ACE2 availability on the membrane and transmembrane protease serine 2 (TMPRSS2) facilitates virus-cell membrane fusion. Interestingly, ACE2, ADAM17 and TMPRSS2 show a daily rhythm of expression in at least some mammalian tissue. The circadian system can also modulate COVID-19 progression via circadian control of the immune system (direct, as well as melatonin-mediated) and blood coagulation. Virus/ACE2 interaction causes ACE2 internalization into the cell, which is associated with suppressed activity of ACE2. As a major role of ACE2 is to form vasodilatory angiotensin 1-7 from angiotensin II (Ang II), suppressed ACE2 levels in the lung can contribute to secondary COVID-19 complications caused by up-regulated, pro-inflammatory vasoconstrictor Ang II. This is supported by the positive association of hypertension and negative COVID-19 prognosis although this relationship is dependent on numerous comorbidities. Hypertension treatment with inhibitors of renin-angiotensin system does not negatively influence prognosis of COVID-19 patients. It seems that tissue susceptibility to SARS-CoV-2 shows negative correlation to ACE2 expression. However, in lungs of infected patient, a high ACE2 expression is associated with better outcome, compared to low ACE2 expression. Manipulation of soluble ACE2 levels is a promising COVID-19 therapeutic strategy.


2007 ◽  
Vol 292 (5) ◽  
pp. H2285-H2294 ◽  
Author(s):  
Norberto C. Gonzalez ◽  
Julie Allen ◽  
Eric J. Schmidt ◽  
Alfred J. Casillan ◽  
Teresa Orth ◽  
...  

Alveolar hypoxia (AH) induces widespread systemic inflammation. Previous studies have shown dissociation between microvascular Po2 and inflammation. Furthermore, plasma from AH rats (PAHR) induces mast cell (MC) activation, inflammation, and vasoconstriction in normoxic cremasters, while plasma from normoxic rats does not produce these responses. These results suggest that inflammation of AH is triggered by a blood-carried agent. This study investigated the involvement of the renin-angiotensin system (RAS) in the inflammation of AH. Both an angiotensin-converting enzyme (ACE) inhibitor and an angiotensin II (ANG II) receptor blocker (ANG II RB) inhibited the leukocyte-endothelial adherence produced by AH, as well as the inflammation produced by PAHR in normoxic rat cremasters. MC stabilization with cromolyn blocked the effects of PAHR but not those of topical ANG II on normoxic cremasters, suggesting ANG II generation via MC activation by PAHR. This was supported by the observation that ACE inhibition and ANG II RB blocked the leukocyte-endothelial adherence produced by the MC secretagogue compound 48/80. These results suggest that the intermediary agent contained in PAHR activates MC and stimulates the RAS, leading to inflammation, and imply an RAS role in AH-induced inflammation.


2020 ◽  
Vol 134 (23) ◽  
pp. 3063-3078 ◽  
Author(s):  
Thiago Verano-Braga ◽  
Ana Luiza Valle Martins ◽  
Daisy Motta-Santos ◽  
Maria José Campagnole-Santos ◽  
Robson Augusto Souza Santos

Abstract In 2020 we are celebrating the 20th anniversary of the angiotensin-converting enzyme 2 (ACE2) discovery. This event was a landmark that shaped the way that we see the renin–angiotensin system (RAS) today. ACE2 is an important molecular hub that connects the RAS classical arm, formed mainly by the octapeptide angiotensin II (Ang II) and its receptor AT1, with the RAS alternative or protective arm, formed mainly by the heptapeptides Ang-(1-7) and alamandine, and their receptors, Mas and MrgD, respectively. In this work we reviewed classical and modern literature to describe how ACE2 is a critical component of the protective arm, particularly in the context of the cardiac function, coagulation homeostasis and immune system. We also review recent literature to present a critical view of the role of ACE2 and RAS in the SARS-CoV-2 pandemic.


2019 ◽  
Vol 317 (2) ◽  
pp. F333-F342 ◽  
Author(s):  
Vanesa Palau ◽  
Julio Pascual ◽  
Maria José Soler ◽  
Marta Riera

It is known that the renin-angiotensin system plays a major role in the pathophysiology of cardiovascular disease and renal injury. Within the renin-angiotensin system, angiotensin-converting enzyme 2 (ACE2) cleaves ANG II to generate ANG(1–7) peptide, which counteracts the adverse effects of ANG II accumulation. ACE2 can undergo cleavage or shedding to release the catalytically active ectodomain into the circulation by a disintegrin and metalloprotease (ADAM)17, also known as TNF-α-converting enzyme. ADAM17 is involved in many pathological processes such as cancer, inflammatory diseases, neurological diseases, cardiovascular diseases, atherosclerosis, diabetes, and hypertension. Clinical and experimental studies have shown that ADAM17 is involved in chronic kidney disease (CKD) with a proinflammatory and profibrotic role, suggesting that it could be an important mediator of CKD progression. ADAM17 inhibition attenuates fibrosis and inflammation, suggesting that its inhibition may be a possible new valuable therapeutic tool in fibrotic kidney disease treatment. In addition, in renal disease, some experimental studies have demonstrated that ADAM17 is differently expressed in the kidney. Thus, ADAM17 is highly expressed in distal renal tubules and increased in the whole kidney in diabetic models. In this article, we will review the role of ADAM17 under physiological and pathological conditions. We will mainly focus on the importance of ADAM17 in the context of CKD.


Sign in / Sign up

Export Citation Format

Share Document