scholarly journals Interactions of Renin-Angiotensin System and COVID-19: The Importance of Daily Rhythms in ACE2, ADAM17 and TMPRSS2 Expression

2021 ◽  
pp. S177-S194
Author(s):  
J ZLACKÁ ◽  
K STEBELOVÁ ◽  
M ZEMAN ◽  
I HERICHOVÁ

Angiotensin-converting enzyme 2 (ACE2) was identified as a molecule that mediates the cellular entry of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2). Several membrane molecules of the host cell must cooperate in this process. While ACE2 serves in a membrane receptor-mediating interaction with the surface spike (S) glycoprotein of SARS-CoV-2 located on the virus envelope, enzyme A disintegrin and metalloproteinase 17 (ADAM17) regulates ACE2 availability on the membrane and transmembrane protease serine 2 (TMPRSS2) facilitates virus-cell membrane fusion. Interestingly, ACE2, ADAM17 and TMPRSS2 show a daily rhythm of expression in at least some mammalian tissue. The circadian system can also modulate COVID-19 progression via circadian control of the immune system (direct, as well as melatonin-mediated) and blood coagulation. Virus/ACE2 interaction causes ACE2 internalization into the cell, which is associated with suppressed activity of ACE2. As a major role of ACE2 is to form vasodilatory angiotensin 1-7 from angiotensin II (Ang II), suppressed ACE2 levels in the lung can contribute to secondary COVID-19 complications caused by up-regulated, pro-inflammatory vasoconstrictor Ang II. This is supported by the positive association of hypertension and negative COVID-19 prognosis although this relationship is dependent on numerous comorbidities. Hypertension treatment with inhibitors of renin-angiotensin system does not negatively influence prognosis of COVID-19 patients. It seems that tissue susceptibility to SARS-CoV-2 shows negative correlation to ACE2 expression. However, in lungs of infected patient, a high ACE2 expression is associated with better outcome, compared to low ACE2 expression. Manipulation of soluble ACE2 levels is a promising COVID-19 therapeutic strategy.

2020 ◽  
Vol 134 (23) ◽  
pp. 3063-3078 ◽  
Author(s):  
Thiago Verano-Braga ◽  
Ana Luiza Valle Martins ◽  
Daisy Motta-Santos ◽  
Maria José Campagnole-Santos ◽  
Robson Augusto Souza Santos

Abstract In 2020 we are celebrating the 20th anniversary of the angiotensin-converting enzyme 2 (ACE2) discovery. This event was a landmark that shaped the way that we see the renin–angiotensin system (RAS) today. ACE2 is an important molecular hub that connects the RAS classical arm, formed mainly by the octapeptide angiotensin II (Ang II) and its receptor AT1, with the RAS alternative or protective arm, formed mainly by the heptapeptides Ang-(1-7) and alamandine, and their receptors, Mas and MrgD, respectively. In this work we reviewed classical and modern literature to describe how ACE2 is a critical component of the protective arm, particularly in the context of the cardiac function, coagulation homeostasis and immune system. We also review recent literature to present a critical view of the role of ACE2 and RAS in the SARS-CoV-2 pandemic.


2012 ◽  
Vol 216 (2) ◽  
pp. R1-R17 ◽  
Author(s):  
Robson A S Santos ◽  
Anderson J Ferreira ◽  
Thiago Verano-Braga ◽  
Michael Bader

Angiotensin (Ang)-(1–7) is now recognized as a biologically active component of the renin–angiotensin system (RAS). Ang-(1–7) appears to play a central role in the RAS because it exerts a vast array of actions, many of them opposite to those attributed to the main effector peptide of the RAS, Ang II. The discovery of the Ang-converting enzyme (ACE) homolog ACE2 brought to light an important metabolic pathway responsible for Ang-(1–7) synthesis. This enzyme can form Ang-(1–7) from Ang II or less efficiently through hydrolysis of Ang I to Ang-(1–9) with subsequent Ang-(1–7) formation by ACE. In addition, it is now well established that the G protein-coupled receptor Mas is a functional binding site for Ang-(1–7). Thus, the axis formed by ACE2/Ang-(1–7)/Mas appears to represent an endogenous counterregulatory pathway within the RAS, the actions of which are in opposition to the vasoconstrictor/proliferative arm of the RAS consisting of ACE, Ang II, and AT1receptor. In this brief review, we will discuss recent findings related to the biological role of the ACE2/Ang-(1–7)/Mas arm in the cardiovascular and renal systems, as well as in metabolism. In addition, we will highlight the potential interactions of Ang-(1–7) and Mas with AT1and AT2receptors.


2001 ◽  
Vol 281 (6) ◽  
pp. R1854-R1861 ◽  
Author(s):  
Raynald Bergeron ◽  
Michael Kjær ◽  
Lene Simonsen ◽  
Jens Bülow ◽  
Dorthe Skovgaard ◽  
...  

The study examined the implication of the renin-angiotensin system (RAS) in regulation of splanchnic blood flow and glucose production in exercising humans. Subjects cycled for 40 min at 50% maximal O2 consumption (V˙o 2 max) followed by 30 min at 70% V˙o 2 maxeither with [angiotensin-converting enzyme (ACE) blockade] or without (control) administration of the ACE inhibitor enalapril (10 mg iv). Splanchnic blood flow was estimated by indocyanine green, and splanchnic substrate exchange was determined by the arteriohepatic venous difference. Exercise led to an ∼20-fold increase ( P < 0.001) in ANG II levels in the control group (5.4 ± 1.0 to 102.0 ± 25.1 pg/ml), whereas this response was blunted during ACE blockade (8.1 ± 1.2 to 13.2 ± 2.4 pg/ml) and in response to an orthostatic challenge performed postexercise. Apart from lactate and cortisol, which were higher in the ACE-blockade group vs. the control group, hormones, metabolites, V˙o 2, and RER followed the same pattern of changes in ACE-blockade and control groups during exercise. Splanchnic blood flow (at rest: 1.67 ± 0.12, ACE blockade; 1.59 ± 0.18 l/min, control) decreased during moderate exercise (0.78 ± 0.07, ACE blockade; 0.74 ± 0.14 l/min, control), whereas splanchnic glucose production (at rest: 0.50 ± 0.06, ACE blockade; 0.68 ± 0.10 mmol/min, control) increased during moderate exercise (1.97 ± 0.29, ACE blockade; 1.91 ± 0.41 mmol/min, control). Refuting a major role of the RAS for these responses, no differences in the pattern of change of splanchnic blood flow and splanchnic glucose production were observed during ACE blockade compared with controls. This study demonstrates that the normal increase in ANG II levels observed during prolonged exercise in humans does not play a major role in the regulation of splanchnic blood flow and glucose production.


2020 ◽  
Vol 319 (4) ◽  
pp. L596-L602
Author(s):  
Rodrigo Pacheco Silva-Aguiar ◽  
Diogo Barros Peruchetti ◽  
Patricia Rieken Macedo Rocco ◽  
Alvin H. Schmaier ◽  
Patrícia Machado Rodrigues e Silva ◽  
...  

A new form of severe acute respiratory syndrome (SARS) caused by SARS-coronavirus 2 (CoV-2), called COVID-19, has become a global threat in 2020. The mortality rate from COVID-19 is high in hypertensive patients, making this association especially dangerous. There appears to be a consensus, despite the lack of experimental data, that angiotensin II (ANG II) is linked to the pathogenesis of COVID-19. This process may occur due to acquired deficiency of angiotensin-converting enzyme 2 (ACE2), resulting in reduced degradation of ANG II. Furthermore, ANG II has a critical role in the genesis and worsening of hypertension. In this context, the idea that there is a surge in the level of ANG II with COVID-19 infection, causing multiple organ injuries in hypertensive patients becomes attractive. However, the role of other components of the renin angiotensin system (RAS) in this scenario requires elucidation. The identification of other RAS components in COVID-19 hypertension may provide both diagnostic and therapeutic benefits. Here, we summarize the pathophysiologic contributions of different components of RAS in hypertension and their possible correlation with poor outcome observed in hypertensive patients with COVID-19.


2010 ◽  
Vol 298 (6) ◽  
pp. F1297-F1305 ◽  
Author(s):  
Carlos M. Ferrario ◽  
Jasmina Varagic

The study of experimental hypertension and the development of drugs with selective inhibitory effects on the enzymes and receptors constituting the components of the circulating and tissue renin-angiotensin systems have led to newer concepts of how this system participates in both physiology and pathology. Over the last decade, a renewed emphasis on understanding the role of angiotensin-(1–7) and angiotensin-converting enzyme 2 in the regulation of blood pressure and renal function has shed new light on the complexity of the mechanisms by which these components of the renin angiotensin system act in the heart and in the kidneys to exert a negative regulatory influence on angiotensin converting enzyme and angiotensin II. The vasodepressor axis composed of angiotensin-(1–7)/angiotensin-converting enzyme 2/mas receptor emerges as a site for therapeutic interventions within the renin-angiotensin system. This review summarizes the evolving knowledge of the counterregulatory arm of the renin-angiotensin system in the control of nephron function and renal disease.


2008 ◽  
Vol 294 (1) ◽  
pp. R26-R32 ◽  
Author(s):  
J. C. B. Ferreira ◽  
A. V. Bacurau ◽  
F. S. Evangelista ◽  
M. A. Coelho ◽  
E. M. Oliveira ◽  
...  

Sympathetic hyperactivity (SH) and renin angiotensin system (RAS) activation are commonly associated with heart failure (HF), even though the relative contribution of these factors to the cardiac derangement is less understood. The role of SH on RAS components and its consequences for the HF were investigated in mice lacking α2A and α2C adrenoceptor knockout (α2A/α2CARKO) that present SH with evidence of HF by 7 mo of age. Cardiac and systemic RAS components and plasma norepinephrine (PN) levels were evaluated in male adult mice at 3 and 7 mo of age. In addition, cardiac morphometric analysis, collagen content, exercise tolerance, and hemodynamic assessments were made. At 3 mo, α2A/α2CARKO mice showed no signs of HF, while displaying elevated PN, activation of local and systemic RAS components, and increased cardiomyocyte width (16%) compared with wild-type mice (WT). In contrast, at 7 mo, α2A/α2CARKO mice presented clear signs of HF accompanied only by cardiac activation of angiotensinogen and ANG II levels and increased collagen content (twofold). Consistent with this local activation of RAS, 8 wk of ANG II AT1 receptor blocker treatment restored cardiac structure and function comparable to the WT. Collectively, these data provide direct evidence that cardiac RAS activation plays a major role underlying the structural and functional abnormalities associated with a genetic SH-induced HF in mice.


2012 ◽  
Vol 2012 ◽  
pp. 1-8 ◽  
Author(s):  
Wencheng Li ◽  
Hua Peng ◽  
Dale M. Seth ◽  
Yumei Feng

It is well known that the brain renin-angiotensin (RAS) system plays an essential role in the development of hypertension, mainly through the modulation of autonomic activities and vasopressin release. However, how the brain synthesizes angiotensin (Ang) II has been a debate for decades, largely due to the low renin activity. This paper first describes the expression of the vasoconstrictive arm of RAS components in the brain as well as their physiological and pathophysiological significance. It then focus on the (pro)renin receptor (PRR), a newly discovered component of the RAS which has a high level in the brain. We review the role of prorenin and PRR in peripheral organs and emphasize the involvement of brain PRR in the pathogenesis of hypertension. Some future perspectives in PRR research are heighted with respect to novel therapeutic target for the treatment of hypertension and other cardiovascular diseases.


2019 ◽  
Vol 316 (5) ◽  
pp. H958-H970 ◽  
Author(s):  
Robson Augusto Souza Santos ◽  
Gavin Y. Oudit ◽  
Thiago Verano-Braga ◽  
Giovanni Canta ◽  
Ulrike Muscha Steckelings ◽  
...  

Thirty years ago, a novel axis of the renin-angiotensin system (RAS) was unveiled by the discovery of angiotensin-(1−7) [ANG-(1−7)] generation in vivo. Later, angiotensin-converting enzyme 2 (ACE2) was shown to be the main mediator of this reaction, and Mas was found to be the receptor for the heptapeptide. The functional analysis of this novel axis of the RAS that followed its discovery revealed numerous protective actions in particular for cardiovascular diseases. In parallel, similar protective actions were also described for one of the two receptors of ANG II, the ANG II type 2 receptor (AT2R), in contrast to the other, the ANG II type 1 receptor (AT1R), which mediates deleterious actions of this peptide, e.g., in the setting of cardiovascular disease. Very recently, another branch of the RAS was discovered, based on angiotensin peptides in which the amino-terminal aspartate was replaced by alanine, the alatensins. Ala-ANG-(1−7) or alamandine was shown to interact with Mas-related G protein-coupled receptor D, and the first functional data indicated that this peptide also exerts protective effects in the cardiovascular system. This review summarizes the presentations given at the International Union of Physiological Sciences Congress in Rio de Janeiro, Brazil, in 2017, during the symposium entitled “The Renin-Angiotensin System: Going Beyond the Classical Paradigms,” in which the signaling and physiological actions of ANG-(1−7), ACE2, AT2R, and alatensins were reported (with a focus on noncentral nervous system-related tissues) and the therapeutic opportunities based on these findings were discussed.


1997 ◽  
Vol 273 (5) ◽  
pp. R1793-R1799 ◽  
Author(s):  
Pierre Lantelme ◽  
Ming Lo ◽  
Laurent Luttenauer ◽  
Jean Sassard

We assessed the role of the renin-angiotensin system (RAS) in Lyon genetically hypertensive (LH) and normotensive (LN) rats by measuring 1) kidney renin and prorenin contents; 2) effects of early, prolonged angiotensin-converting enzyme (ACE) inhibition on blood pressure (BP) and regional hemodynamics; and 3) acute and chronic responses to angiotensin II (ANG II) and norepinephrine (NE). At the adult age, LH rats differed from LN rats by elevated BP, left ventricle weight, and vascular resistances, especially in the kidneys, associated with lower kidney renin and prorenin contents. ACE inhibition (perindopril, 3 mg ⋅ kg−1 ⋅ 24 h−1 orally from 3 to 15 wk of age) suppressed the development of hypertension, cardiac hypertrophy, and the increase in renal vascular resistances. No specific hypersensitivity to ANG II could be disclosed in acute conditions. In perindopril-treated LH rats, a 4-wk infusion of ANG II (200 ng ⋅ kg−1 ⋅ min−1) but not of NE (1,000 ng ⋅ kg−1 ⋅ min−1) restored hypertension, mimicked the hemodynamic alterations seen in untreated LH rats, and produced a brief sodium retention. It is concluded that in LH rats, despite a low basal renin secretion, hypertension and hemodynamic abnormalities 1) are fully dependent on an active RAS and 2) may involve an enhanced sensitivity to the chronic effects of ANG II.


Sign in / Sign up

Export Citation Format

Share Document