scholarly journals The role of the adiponectin system in acute fasting-impaired mouse ovaries

Reproduction ◽  
2019 ◽  
Vol 158 (5) ◽  
pp. 429-440
Author(s):  
Yingying Han ◽  
Shuhao Zhang ◽  
Haotong Zhuang ◽  
Sijie Fan ◽  
Jiayi Yang ◽  
...  

Adiponectin (ADIPOQ, encoded by Adipoq) is an important white adipose-derived adipokine linked to energy homeostasis and reproductive function. This study aims to reveal the expression and role of the adiponectin system in the ovaries under acute malnutrition. In this study, 48-h food deprivation significantly inhibited ovarian growth by suppressing cell proliferation and inducing cell apoptosis in the ovaries of gonadotrophin-primed immature mice. It was also accompanied by significantly decelerated basic metabolism (glucose, triacylglycerol and cholesterol), varied steroid hormones (follicle-stimulating hormone, luteinizing hormone and estradiol) and vanishment of the peri-ovarian fat. It is noteworthy that after acute fasting, the adiponectin levels in ovaries rather than in blood were significantly elevated. Immunohistochemical study demonstrated that adiponectin and its receptors (ADIPOR1 and ADIPOR2) primarily appeared in ovarian somatic and/or germ cells, and their protein expressions were upregulated in the ovaries from fasted mice. Further in vitro study verified that ADIPOR1/2 agonist obviously inhibited follicle-stimulating hormone-induced oocyte meiotic resumption, while the antagonist significantly enhanced the percentage of oocyte maturation in the absence of follicle-stimulating hormone. Furthermore, the build up of peri-ovarian fat under physiological status in mice showed a positive correlation with both the hypertrophy of adipocytes and growth of ovaries. Taken together, these findings indicate that the upregulation of the adiponectin system disturbs the normal female reproductive function under the malnutrition status, and it may be associated with the loss of peri-ovarian fat depots.

1991 ◽  
Vol 125 (3) ◽  
pp. 280-285 ◽  
Author(s):  
J. Alan Talbot ◽  
Ann Lambert ◽  
Robert Mitchell ◽  
Marek Grabinski ◽  
David C. Anderson ◽  
...  

Abstract We have investigated the role of Ca2+ in the control of FSH-induced estradiol secretion by Sertoli cells isolated from 8-10 days old rats. Exogenous Ca2+ (4-8 mmol/1) inhibited FSH-stimulated E2 secretion such that, with 8 mmol/l Ca2+ and FSH (8 IU/l) E2 secretion decreased from 2091±322 to 1480±84 pmol/l (p<0.002), whilst chelation of Ca2+ in the culture medium with EGTA (3 mmol/l) increased E2 secretion from 360±45 to 1242±133 pmol/l) in the absence of FSH. Further, EGTA (3 mmol/l) markedly potentiated FSH (8 IU/l), forskolin (1 μmol/l) and dibutyryl cAMP (1 mmol/l)-stimulated E2 secretion. Addition of the Ca2+ ionophores, ionomycin (2-5 μmol/l) and A23187 (2 μmol/l), inhibited FSH (8 IU/l)-stimulated E2 secretion by >80%. The effect of ionomycin was totally reversible, whereas that of A23187 was irreversible. Ionomycin (5 μmol/l) had no effect on EGTA-induced E2 secretion in the absence of FSH, but reduced EGTA-provoked E2 secretion by 59% in the presence of FSH (8 IU/l). Similarly, forskolin- and dibutyryl cAMP-provoked E2 production was inhibited 46-50% by ionomycin (5 μmol/l). We conclude that FSH-induced E2 secretion from immature rat Sertoli cells is modulated by intra- and extracellular Ca2+.


Endocrinology ◽  
1982 ◽  
Vol 111 (1) ◽  
pp. 144-151 ◽  
Author(s):  
JOHANNES D. VELDHUIS ◽  
PATRICIA A. KLASE ◽  
JEROME F. STRAUSS ◽  
JAMES M. HAMMOND

Zygote ◽  
2007 ◽  
Vol 15 (2) ◽  
pp. 173-182 ◽  
Author(s):  
M.H.T. Matos ◽  
I.B. Lima-Verde ◽  
M.C.A. Luque ◽  
J.E. Maia Jr ◽  
J.R.V. Silva ◽  
...  

SummaryThe aims of the present study were to investigate the effects of follicle-stimulating hormone (FSH) on survival, activation and growth of caprine primordial follicles using histological and ultrastructural studies. Pieces of caprine ovarian cortex were cultured for 1 or 7 days in minimum essential medium (MEM – control medium) supplemented with different concentrations of FSH (0, 10, 50 or 100 ng/ml). Small fragments from non-cultured ovarian tissue and from those cultured for 1 or 7 days in a specific medium were processed for classical histology and transmission electron microscopy (TEM). Additionally, effects of FSH on oocyte and follicle diameter of cultured follicles were evaluated. The results showed that the lowest percentage of normal follicles was observed after 7 days of culture in control medium. After 1 day of culture, a higher percentage of growing follicles was observed in the medium supplemented with 50 ng/ml of FSH. In the presence of 10 and 50 ng/ml of FSH, an increase in diameter of both oocyte and follicle on day 7 of culture was observed. TEM showed ultrastructural integrity of follicles after 1 day of culture in MEM and after 7 days in MEM plus 50 ng/ml FSH, but did not confirm the integrity of those follicles cultured for 7 days in MEM. In conclusion, this study demonstrated that FSH at concentration of 50 ng/ml not only maintains the morphological integrity of 7 days cultured caprine preantral follicles, but also stimulate the activation of primordial follicles and the growth of activated follicles.


1994 ◽  
Vol 6 (2) ◽  
pp. 127 ◽  
Author(s):  
JK Findlay

The role of the gonadotrophins follicle-stimulating hormone (FSH) and luteinizing hormone and the putative local regulators, activin and follistatin, in the control of folliculogenesis is reviewed. An account of early work on the development and application of assays for FSH and inhibin is given, together with a summary of the data on the ovarian responsiveness to gonadotrophin and follicular atresia. Models for studying local regulation of granulosa cells in vitro are described and the data from these experiments reviewed. It is concluded that activin has a role in the development and maintenance of healthy oestrogenic follicles, preventing premature luteinization, whereas follistatin opposes these effects of activin and promotes luteinization or atresia.


2008 ◽  
Vol 295 (2) ◽  
pp. E278-E286 ◽  
Author(s):  
B. M. McGowan ◽  
S. A. Stanley ◽  
J. Donovan ◽  
E. L. Thompson ◽  
M. Patterson ◽  
...  

The hypothalamus plays a key role in the regulation of both energy homeostasis and reproduction. Evidence suggests that relaxin-3, a recently discovered member of the insulin superfamily, is an orexigenic hypothalamic neuropeptide. Relaxin-3 is thought to act in the brain via the RXFP3 receptor, although the RXFP1 receptor may also play a role. Relaxin-3, RXFP3, and RXFP1 are present in the hypothalamic paraventricular nucleus, an area with a well-characterized role in the regulation of energy balance that also modulates reproductive function by providing inputs to hypothalamic gonadotropin-releasing hormone (GnRH) neurons. Other members of the relaxin family are known to play a role in the regulation of reproduction. However, the effects of relaxin-3 on reproductive function are unknown. We studied the role of relaxin-3 in the regulation of the hypothalamo-pituitary-gonadal (HPG) axis. Intracerebroventricular (5 nmol) and intraparaventricular (540–1,620 pmol) administration of human relaxin-3 (H3) in adult male Wistar rats significantly increased plasma luteinizing hormone (LH) 30 min postinjection. This effect was blocked by pretreatment with a peripheral GnRH antagonist. Central administration of human relaxin-2 showed no significant effect on plasma LH. H3 dose-dependently stimulated the release of GnRH from hypothalamic explants and GT1-7 cells, which express RXFP1 and RXFP3, but did not influence LH or follicle-stimulating hormone release from pituitary fragments in vitro. We have demonstrated a novel role for relaxin-3 in the stimulation of the HPG axis, putatively via hypothalamic GnRH neurons. Relaxin-3 may act as a central signal linking nutritional status and reproductive function.


Sign in / Sign up

Export Citation Format

Share Document