scholarly journals Single-Seed Casting Large-Size Monocrystalline Silicon for High-Efficiency and Low-Cost Solar Cells

Engineering ◽  
2015 ◽  
Vol 1 (3) ◽  
pp. 378-383 ◽  
Author(s):  
Bing Gao ◽  
Satoshi Nakano ◽  
Hirofumi Harada ◽  
Yoshiji Miyamura ◽  
Takashi Sekiguchi ◽  
...  
2012 ◽  
Vol 476-478 ◽  
pp. 1815-1819 ◽  
Author(s):  
Jing Wei Chen ◽  
Lei Zhao ◽  
Su Zhou ◽  
Hong Wei Diao ◽  
Ye Hua Tang ◽  
...  

Pyramidal texture is one traditional method to realize antireflection for c-Si solar cells, due to its low cost and simplicity. As one high efficiency silicon solar cell, amorphous/crystalline silicon heterojunction (SHJ) solar cell has attracted much attention all over the world. The heterojunction interface with very low defects and interface states is critical to the SHJ solar cell performance. In order to obtain high quality interface passivation by depositing a very thin intrinsic amorphous silicon layer on the textured Si conformally, large size pyramidal texture with no metal ion contamination is required. In this work, we utilized tetra-methyl ammonium hydroxide (TMAH) instead of NaOH in the alkaline etching to prepare pyramidal texture on N-type monocrystalline silicon to avoid the possible Na+ contamination. By optimizing the etching conditions, uniform large size pyramidal texture with pyramid size of about 10 μm was fabricated successfully. Furthermore, excellent antireflection performance was demonstrated on such textured Si surface. The average reflectance was lower than 10% in the visible and near infrared spectrum range. Such pyramidally textured Si wafers will be very suitable for SHJ solar cells.


2012 ◽  
Vol 2012 ◽  
pp. 1-21 ◽  
Author(s):  
Yuancheng Qin ◽  
Qiang Peng

Dye-sensitized solar cells (DSSCs) have attracted considerable attention in recent years due to the possibility of low-cost conversion of photovoltaic energy. The DSSCs-based ruthenium complexes as sensitizers show high efficiency and excellent stability, implying potential practical applications. This review focuses on recent advances in design and preparation of efficient ruthenium sensitizers and their applications in DSSCs, including thiocyanate ruthenium sensitizers and thiocyanate-free ruthenium sensitizers.


2015 ◽  
Vol 51 (51) ◽  
pp. 10306-10309 ◽  
Author(s):  
Haibo Huang ◽  
Jiangjian Shi ◽  
Songtao Lv ◽  
Dongmei Li ◽  
Yanhong Luo ◽  
...  

Uniform, thickness-controllable and large-size mesoscopic TiO2 films have been prepared by a spray method by using commercial P25 nanoparticles, yielding high efficiency for perovskite solar cells.


2012 ◽  
Vol 2012 ◽  
pp. 1-1 ◽  
Author(s):  
J. Yi ◽  
Eicke R. Weber ◽  
C. W. Lan ◽  
Stephen Bremner ◽  
D. H. Kim
Keyword(s):  

Author(s):  
Li Zhang ◽  
Hui Li ◽  
Jing Zhuang ◽  
Yigang Luan ◽  
Sixuan Wu ◽  
...  

The low-cost material antimony trifluoride (SbF3) was doped into the commonly used tin dioxide (SnO2) for the first time, and the SbF3-doped SnO2 as an electron transport layer (ETL) was...


Metals ◽  
2018 ◽  
Vol 8 (11) ◽  
pp. 964 ◽  
Author(s):  
Yue Zhang ◽  
Haiming Zhang ◽  
Xiaohui Zhang ◽  
Lijuan Wei ◽  
Biao Zhang ◽  
...  

Organic–inorganic hybrid perovskite solar cells (PSCs) have made immense progress in recent years, owing to outstanding optoelectronic properties of perovskite materials, such as high extinction coefficient, carrier mobility, and low exciton binding energy. Since the first appearance in 2009, the efficiency of PSCs has reached 23.3%. This has made them the most promising rival to silicon-based solar cells. However, there are still several issues to resolve to promote PSCs’ outdoor applications. In this review, three crucial aspects of PSCs, including high efficiency, environmental stability, and low-cost of PSCs, are described in detail. Recent in-depth studies on different aspects are also discussed for better understanding of these issues and possible solutions.


2015 ◽  
Vol 2015 ◽  
pp. 1-10 ◽  
Author(s):  
Guiming Peng ◽  
Xueqing Xu ◽  
Gang Xu

The ramping solar energy to electricity conversion efficiencies of hybrid organic-inorganic perovskite solar cells during the last five years have opened new doors to low-cost solar energy. The record power conversion efficiency has climbed to 19.3% in August 2014 and then jumped to 20.1% in November. In this review, the main achievements for perovskite solar cells categorized from a viewpoint of device structure are overviewed. The challenges and prospects for future development of this field are also briefly presented.


Sign in / Sign up

Export Citation Format

Share Document