scholarly journals Hybrid Organic-Inorganic Perovskites Open a New Era for Low-Cost, High Efficiency Solar Cells

2015 ◽  
Vol 2015 ◽  
pp. 1-10 ◽  
Author(s):  
Guiming Peng ◽  
Xueqing Xu ◽  
Gang Xu

The ramping solar energy to electricity conversion efficiencies of hybrid organic-inorganic perovskite solar cells during the last five years have opened new doors to low-cost solar energy. The record power conversion efficiency has climbed to 19.3% in August 2014 and then jumped to 20.1% in November. In this review, the main achievements for perovskite solar cells categorized from a viewpoint of device structure are overviewed. The challenges and prospects for future development of this field are also briefly presented.

2019 ◽  
Vol 9 (1) ◽  
Author(s):  
Md. Shahiduzzaman ◽  
Toshiharu Sakuma ◽  
Tetsuya Kaneko ◽  
Koji Tomita ◽  
Masao Isomura ◽  
...  

AbstractIn this study, a new, simple, and novel oblique electrostatic inkjet (OEI) technique is developed to deposit a titanium oxide (TiO2) compact layer (CL) on fluorine-doped tin oxide (FTO) substrate without the need for a vacuum environment for the first time. The TiO2 is used as electron transport layers (ETL) in planar perovskite solar cells (PSCs). This bottom-up OEI technique enables the control of the surface morphology and thickness of the TiO2 CL by simply manipulating the coating time. The OEI-fabricated TiO2 is characterized tested and the results are compared with that of TiO2 CLs produced by spin-coating and spray pyrolysis. The OEI-deposited TiO2 CL exhibits satisfactory surface coverage and smooth morphology, conducive for the ETLs in PSCs. The power-conversion efficiencies of PSCs with OEI-deposited TiO2 CL as the ETL were as high as 13.19%. Therefore, the present study provides an important advance in the effort to develop simple, low-cost, and easily scaled-up techniques. OEI may be a new candidate for depositing TiO2 CL ETLs for highly efficient planar PSCs, thus potentially contributing to future mass production.


2019 ◽  
Vol 7 (36) ◽  
pp. 20494-20518 ◽  
Author(s):  
Bo Li ◽  
Lin Fu ◽  
Shuang Li ◽  
Hui Li ◽  
Lu Pan ◽  
...  

High-efficiency and low-cost perovskite solar cells (PSCs) are desirable candidates for addressing the scalability challenge of renewable solar energy.


2019 ◽  
Vol 3 (10) ◽  
pp. 2627-2632 ◽  
Author(s):  
Sergey Tsarev ◽  
Igor K. Yakushchenko ◽  
Sergey Yu Luchkin ◽  
Petr M. Kuznetsov ◽  
Ruslan S. Timerbulatov ◽  
...  

Modification of PTAA molecular structure significantly improves the power conversion efficiencies of dopant-free HTL n–i–p perovskite solar cells.


Coatings ◽  
2019 ◽  
Vol 9 (10) ◽  
pp. 622 ◽  
Author(s):  
Huang ◽  
Gao ◽  
Zhang ◽  
Tian ◽  
Zhang ◽  
...  

Abstract: Organic-inorganic perovskite solar cells (PSCs) are a high-efficiency, low-cost form of solar technology because of the abundance of useful materials and a simple fabrication procedure relative to other photovoltaic devices. Furthermore, the perovskite material shows decent electron and hole mobilities, a wide absorption range, and long exciton diffusion length. So far, many groups have focused on the research of perovskite thin-film solar cells, and these perovskite solar cells have been deemed to be one of the leading next generation photovoltaic technologies. However, there are several problems that restrict the enhancement of perovskite solar cell performance such as their poor uniformity and low crystallinity. Herein we summarize and discuss the role of film quality on power conversion efficiency, and effect of fabrication condition on the light absorbance of perovskite film.


2017 ◽  
Vol 5 (10) ◽  
pp. 4756-4773 ◽  
Author(s):  
Ziran Zhao ◽  
Weihai Sun ◽  
Yunlong Li ◽  
Senyun Ye ◽  
Haixia Rao ◽  
...  

Organo-metal halide perovskite solar cells have shown great potential for application in photovoltaics with their high power conversion efficiency.


2020 ◽  
Vol 11 (1) ◽  
Author(s):  
Junke Wang ◽  
Valerio Zardetto ◽  
Kunal Datta ◽  
Dong Zhang ◽  
Martijn M. Wienk ◽  
...  

Abstract Perovskite semiconductors hold a unique promise in developing multijunction solar cells with high-efficiency and low-cost. Besides design constraints to reduce optical and electrical losses, integrating several very different perovskite absorber layers in a multijunction cell imposes a great processing challenge. Here, we report a versatile two-step solution process for high-quality 1.73 eV wide-, 1.57 eV mid-, and 1.23 eV narrow-bandgap perovskite films. Based on the development of robust and low-resistivity interconnecting layers, we achieve power conversion efficiencies of above 19% for monolithic all-perovskite tandem solar cells with limited loss of potential energy and fill factor. In a combination of 1.73 eV, 1.57 eV, and 1.23 eV perovskite sub-cells, we further demonstrate a power conversion efficiency of 16.8% for monolithic all-perovskite triple-junction solar cells.


RSC Advances ◽  
2021 ◽  
Vol 11 (8) ◽  
pp. 4417-4424
Author(s):  
Ahmed Esmail Shalan ◽  
Mustafa K. A. Mohammed ◽  
Nagaraj Govindan

In recent times, perovskite solar cells (PSCs) have been of wide interest in solar energy research, which has ushered in a new era for photovoltaic power sources through the incredible enhancement in their power conversion efficiency (PCE).


Sign in / Sign up

Export Citation Format

Share Document