Intermediate pyrolysis of biomass

Author(s):  
A. Hornung
2021 ◽  
Vol 323 ◽  
pp. 00003
Author(s):  
Artur Bieniek ◽  
Wojciech Jerzak ◽  
Aneta Magdziarz

Biomass pyrolysis is an advanced process which leads to obtaining products as chars, primary tars and gases. Depending on pyrolysis conditions and reactor construction, the pyrolysis could be divided into three categories: slow, intermediate and fast. This work concerns the experimental analysis of an intermediate pyrolysis of biomass residues in a fixed bed reactor. As raw materials, pine bark and wheat straw were selected. Experiments were carried out at three temperatures: 400, 500 and 600 °C under constant volume flow rate of inert gas equal to 100 ml/min. Biomass samples were kept for 150 seconds in the hot zone. The main goal was to compare yields, elemental composition, and calorific values of received products under studied process conditions. The ultimate analysis of chars and organic fractions of oils was performed. Obtained results from ultimate analysis allowed to determine higher heating values by a theoretical correlation. The products of pyrolysis obtained at 600 °C characterized by the most energetic parameters. The higher heating value for organic fraction of tars was 31.62 MJ/kg while for char was 29.47 MJ/kg.


2013 ◽  
Vol 14 (2) ◽  
Author(s):  
Noor Fachrizal

Biomass such as agriculture waste and urban waste are enormous potency as energy resources instead of enviromental problem. organic waste can be converted into energy in the form of liquid fuel, solid, and syngas by using of pyrolysis technique. Pyrolysis process can yield higher liquid form when the process can be drifted into fast and flash response. It can be solved by using microwave heating method. This research is started from developing an experimentation laboratory apparatus of microwave-assisted pyrolysis of biomass energy conversion system, and conducting preliminary experiments for gaining the proof that this method can be established for driving the process properly and safely. Modifying commercial oven into laboratory apparatus has been done, it works safely, and initial experiments have been carried out, process yields bio-oil and charcoal shortly, several parameters are achieved. Some further experiments are still needed for more detail parameters. Theresults may be used to design small-scale continuous model of productionsystem, which then can be developed into large-scale model that applicable for comercial use.


2021 ◽  
Vol 121 ◽  
pp. 255-264
Author(s):  
Honggang Fan ◽  
Jing Gu ◽  
Yazhuo Wang ◽  
Haoran Yuan ◽  
Yong Chen ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document