Food processing equipment construction materials

2014 ◽  
pp. 142-154
Author(s):  
M. Lewan ◽  
E. Partington
2007 ◽  
Vol 70 (11) ◽  
pp. 2473-2479 ◽  
Author(s):  
SUDEEP JAIN ◽  
JINRU CHEN

This study was undertaken to quantify thin aggregative fimbriae and cellulose produced by Salmonella and to evaluate their roles in attachment and biofilm formation on polystyrene and glass surfaces. Thin aggregative fimbriae and cellulose produced by four wild-type and two pairs of Salmonella, representing four different colony morphotypes (rdar: red, dry, and rough; pdar: pink, dry, and rough; bdar: brown, dry, and rough; and saw: smooth and white), were quantified. The ability of the Salmonella cells to attach and form biofilms on the selected surfaces was evaluated in Luria-Bertani (LB) broth with or without salt (0.5%) or glucose (2%) at 28°C during a 7-day period. The cells expressing the rdar or pdar colony morphotypes produced significantly greater amounts of thin aggregative fimbriae and cellulose on LB no salt agar, respectively. The cells expressing the rdar colony morphotype attached in higher numbers and formed more biofilm than did the cells expressing the pdar colony morphotype. The members of the pairs expressing the bdar colony morphotype attached more efficiently and formed more biofilm on the tested surfaces than did their counterparts expressing the saw colony morphotype. These results indicated that thin aggregative fimbriae impart attachment ability to Salmonella and, upon coexpression with cellulose, enhance biofilm formation on certain abiotic surfaces. The knowledge acquired in the study may help develop better cleaning strategies for food processing equipment.


Sign in / Sign up

Export Citation Format

Share Document