Digital Filtering in the Time Domain

2006 ◽  
pp. 522-540
Author(s):  
Jonathan M. Blackledget
Geophysics ◽  
1964 ◽  
Vol 29 (3) ◽  
pp. 395-404 ◽  
Author(s):  
E. A. Robinson ◽  
S. Treitel

The digital computer is a versatile tool that may be used to filter seismic traces. Conventional filtering is performed by means of analog‐type electronic networks, whose behavior is ordinarily studied in the frequency domain. Digital filtering, on the other hand, is more fruitfully treated in the time domain. A digital filter is represented by a sequence of numbers called weighting coefficients. The output of a digital filter is obtained by convolving the digitized input trace with the filter’s weighting coefficients. The mechanics of digital filtering in the time domain are described with the aid of discrete z‐transform theory. These ideas are then related to the more familiar interpretation of filter behavior in the frequency domain. An important criterion for the classification of filters is the notion of “minimum phase‐lag.” This paper ends with a new and simple presentation of this concept.


Author(s):  
Mohammad Reza Asharif ◽  
Rui Chen

In this chapter, we shall study adaptive digital filtering (ADF) and its application to acoustic echo canceling (AEC). At first, Wiener filtering and algorithms such as LMS in the time domain for ADF are explained. Then, to decrease the computational complexity, the frequency domain algorithms such as FDAF and FBAF will be studied. To challenge the double-talk problem in AEC, we will also introduce various algorithms by processing the correlation function of the signal. The proposed algorithms here are CLMS, ECLMS, and using frequency domain is FECLMS, and using wavelet transform is WECLMS. Each of these algorithms has its own merits, and they will be evaluated. At the end of this chapter a new system for room-acoustic partitioning is proposed. This new system is called smart acoustic room (SAR). The SAR will also be used in AEC with double-talk condition. The authors wish to gather all aspects in studying ADF and their use in AEC by going very deep into theoretical details as well as considering more practical and feasible applications considering real-time implementation.


1992 ◽  
Vol 2 (4) ◽  
pp. 615-620
Author(s):  
G. W. Series
Keyword(s):  

2018 ◽  
Vol 12 (7-8) ◽  
pp. 76-83
Author(s):  
E. V. KARSHAKOV ◽  
J. MOILANEN

Тhe advantage of combine processing of frequency domain and time domain data provided by the EQUATOR system is discussed. The heliborne complex has a towed transmitter, and, raised above it on the same cable a towed receiver. The excitation signal contains both pulsed and harmonic components. In fact, there are two independent transmitters operate in the system: one of them is a normal pulsed domain transmitter, with a half-sinusoidal pulse and a small "cut" on the falling edge, and the other one is a classical frequency domain transmitter at several specially selected frequencies. The received signal is first processed to a direct Fourier transform with high Q-factor detection at all significant frequencies. After that, in the spectral region, operations of converting the spectra of two sounding signals to a single spectrum of an ideal transmitter are performed. Than we do an inverse Fourier transform and return to the time domain. The detection of spectral components is done at a frequency band of several Hz, the receiver has the ability to perfectly suppress all sorts of extra-band noise. The detection bandwidth is several dozen times less the frequency interval between the harmonics, it turns out thatto achieve the same measurement quality of ground response without using out-of-band suppression you need several dozen times higher moment of airborne transmitting system. The data obtained from the model of a homogeneous half-space, a two-layered model, and a model of a horizontally layered medium is considered. A time-domain data makes it easier to detect a conductor in a relative insulator at greater depths. The data in the frequency domain gives more detailed information about subsurface. These conclusions are illustrated by the example of processing the survey data of the Republic of Rwanda in 2017. The simultaneous inversion of data in frequency domain and time domain can significantly improve the quality of interpretation.


2019 ◽  
Vol 629 ◽  
pp. A112 ◽  
Author(s):  
B. M. Giuliano ◽  
A. A. Gavdush ◽  
B. Müller ◽  
K. I. Zaytsev ◽  
T. Grassi ◽  
...  

Context. Reliable, directly measured optical properties of astrophysical ice analogues in the infrared and terahertz (THz) range are missing from the literature. These parameters are of great importance to model the dust continuum radiative transfer in dense and cold regions, where thick ice mantles are present, and are necessary for the interpretation of future observations planned in the far-infrared region. Aims. Coherent THz radiation allows for direct measurement of the complex dielectric function (refractive index) of astrophysically relevant ice species in the THz range. Methods. We recorded the time-domain waveforms and the frequency-domain spectra of reference samples of CO ice, deposited at a temperature of 28.5 K and annealed to 33 K at different thicknesses. We developed a new algorithm to reconstruct the real and imaginary parts of the refractive index from the time-domain THz data. Results. The complex refractive index in the wavelength range 1 mm–150 μm (0.3–2.0 THz) was determined for the studied ice samples, and this index was compared with available data found in the literature. Conclusions. The developed algorithm of reconstructing the real and imaginary parts of the refractive index from the time-domain THz data enables us, for the first time, to determine the optical properties of astrophysical ice analogues without using the Kramers–Kronig relations. The obtained data provide a benchmark to interpret the observational data from current ground-based facilities as well as future space telescope missions, and we used these data to estimate the opacities of the dust grains in presence of CO ice mantles.


Sign in / Sign up

Export Citation Format

Share Document