Microbial kinetics during batch, continuous and fed-batch processes

2013 ◽  
pp. 97-146 ◽  
Author(s):  
Kim Gail Clarke
Fermentation ◽  
2021 ◽  
Vol 7 (2) ◽  
pp. 62
Author(s):  
Konstantins Dubencovs ◽  
Janis Liepins ◽  
Arturs Suleiko ◽  
Anastasija Suleiko ◽  
Reinis Vangravs ◽  
...  

The Kluyveromyces marxianus yeast recently has gained considerable attention due to its applicability in high-value-added product manufacturing. In order to intensify the biosynthesis rate of a target product, reaching high biomass concentrations in the reaction medium is mandatory. Fed-batch processes are an attractive and efficient way how to achieve high cell densities. However, depending on the physiology of the particular microbial strain, an optimal media composition should be used to avoid by-product synthesis and, subsequently, a decrease in overall process effi-ciency. Thus, the aim of the present study was to optimise the synthetic growth medium and feeding solution compositions (in terms of carbon, nitrogen, phosphorous, magnesium, and calcium concentrations) for high cell density K. marxianus fed‑batch cultivations. Additionally, the biomass yields from the vitamin mixture and other macro/microelements were identified. A model predictive control algorithm was successfully applied for a fed-batch cultivation control. Biomass growth and substrate consumption kinetics were compared with the mathematical model predictions. Finally, 2‑phenylethanol biosynthesis was induced and its productivity was estimated. The determined optimal macronutrient ratio for K. marxianus biomass growth was identified as C:N:P = 1:0.07:0.011. The maximal attained yeast biomass concentration was close to 70 g·L-1 and the 2-PE biosynthesis rate was 0.372 g·L−1·h−1, with a yield of 74% from 2-phenylalanine.


2007 ◽  
Vol 23 (2) ◽  
pp. 458-464 ◽  
Author(s):  
H.L. Prentice ◽  
B.N. Ehrenfels ◽  
W.P. Sisk

2015 ◽  
Vol 4 (2) ◽  
pp. 165 ◽  
Author(s):  
Mahsa Madani Hosseini ◽  
Catherine N. Mulligan ◽  
Suzelle Barrington

<p class="emsd">In-Storage-Psychrophilic-Anaerobic-Digestion (ISPAD) is a treatment system applicable to wastewaters stored for over 100 days, such as livestock wastes and municipal sludge. The ISPAD system differs from conventional reactors by being a sequentially fed batch process operating at a temperature fluctuating with ambient. The objective of this study was to develop a mathematical model to simulate the ISPAD process, verify the value of its microbial kinetics, and to simulate the pH evolution of its content along with its methane (CH<sub>4</sub>) production. Furthermore, the values of the ISPAD microbial kinetics were compared to that of previous years to track for further acclimation to psychrophilic conditions. Simulation of ISPAD was achieved using the Simulink/Matlab software. The model was calibrated using laboratory data obtained from batch experiments using 7-year-old ISPAD inoculum, and glucose as substrate, and where glucose, VFAs and pH changes were monitored along with biogas production. The ISPAD model showed good agreement with the experimental data representing the system behaviour between 4 and 35 ºC. Although microbial activity at 4 °C was much slower than that at 18 and 35 ºC, it showed acclimation to low temperatures. Furthermore, comparison of microbial kinetic values over 3 years of field ISPAD monitoring demonstrated continued population acclimation, especially for the methanogens.</p>


2013 ◽  
Vol 34 (1) ◽  
pp. 175-186 ◽  
Author(s):  
Ilknur Atasoy ◽  
Mehmet Yuceer ◽  
Ridvan Berber

Abstract Saccharamyces cerevisia known as baker’s yeast is a product used in various food industries. Worldwide economic competition makes it a necessity that industrial processes be operated in optimum conditions, thus maximisation of biomass in production of saccharamyces cerevisia in fedbatch reactors has gained importance. The facts that the dynamic fermentation model must be considered as a constraint in the optimisation problem, and dynamics involved are complicated, make optimisation of fed-batch processes more difficult. In this work, the amount of biomass in the production of baker’s yeast in fed-batch fermenters was intended to be maximised while minimising unwanted alcohol formation, by regulating substrate and air feed rates. This multiobjective problem has been tackled earlier only from the point of view of finding optimum substrate rate, but no account of air feed rate profiles has been provided. Control vector parameterisation approach was applied the original dynamic optimisation problem which was converted into a NLP problem. Then SQP was used for solving the dynamic optimisation problem. The results demonstrate that optimum substrate and air feeding profiles can be obtained by the proposed optimisation algorithm to achieve the two conflicting goals of maximising biomass and minimising alcohol formation.


2013 ◽  
Author(s):  
Waldemar Rymowicz ◽  
Agnieszka Kita ◽  
Anita Rywińska ◽  
Aleksandra Mirończuk

2006 ◽  
Vol 39 (2) ◽  
pp. 279-284 ◽  
Author(s):  
Ng Yew Seng ◽  
Rajagopalan Srinivasan

Author(s):  
Frederic Sauvage ◽  
Martin Guay ◽  
Michel Perrier ◽  
Thierry Monge ◽  
Denis Dochain

Sign in / Sign up

Export Citation Format

Share Document