N ɛ -(Carboxymethyl)lysine Formation from Amadori Products by Hydroxyl Radicals

Author(s):  
Ryoji Nagai ◽  
Kazuyoshi Ikeda ◽  
Takayuki Higashi ◽  
Hiroyuki Sano ◽  
Yoshiteru Jinnouchi ◽  
...  
2007 ◽  
Vol 41 (6) ◽  
pp. 713-718 ◽  
Author(s):  
Katsumi Mera ◽  
Ryoji Nagai ◽  
Nozomu Haraguchi ◽  
Yukio Fujiwara ◽  
Tomohiro Araki ◽  
...  

2002 ◽  
Vol 82 (6) ◽  
pp. 795-808 ◽  
Author(s):  
Cristina Miki Hayashi ◽  
Ryoji Nagai ◽  
Kiminori Miyazaki ◽  
Fumitaka Hayase ◽  
Tomohiro Araki ◽  
...  

1992 ◽  
Vol 27 (1) ◽  
pp. 185-202
Author(s):  
C.R. Erland Jansson

Abstract The UVOX process was developed to reduce the high concentrations of trihalomethanes, a potentially hazardous disinfection by-product found in a surface water supply for a community in northeastern Saskatchewan. Pilot plant tests were conducted at a throughput of 1.25 l/s utilizing UV to produce hydroxyl radicals from photolysis of H2O2 with air cooled UV units. These tests continued through 1985 andl986 to provide operational data for all seasons of the year. Test results indicated that the UVOX process was effective in reducing trihalomethane formation potential to very low levels. Recent concerns have also centred on the biocidal effectivenesss of disinfectants, particularly when applied to inactivation of resistant species of microogranisms, such as the cysts of Giardia lamblia. The UVOX process in a single pass configuration slightly enhanced the ability of UV to inactivate Giardia cysts.


1998 ◽  
Vol 38 (6) ◽  
pp. 147-154 ◽  
Author(s):  
Hideo Utsumi ◽  
Sang-Kuk Han ◽  
Kazuhiro Ichikawa

Generation of hydroxyl radicals, one of the major active species in ozonation of water was directly observed with a spin-trapping/electron spin resonance (ESR) technique using 5,5-dimethyl-1-pyrrolineN-oxide (DMPO) as a spin-trapping reagent. Hydroxyl radical were trapped with DMPO as a stable radical, DMPO-OH. Eighty μM of ozone produced 1.08 X 10-6M of DMPO-OH, indicating that 1.4% of •OH is trapped with DMPO. Generation rate of DMPO-OH was determined by ESR/stopped-flow measurement. Phenol derivatives increased the amount and generation rate of DMPO-OH, indicating that phenol derivatives enhance •OH generation during ozonation of water. Ozonation of 2,3-, 2,5-, 2,6-dichlorophenol gave an ESR spectra of triplet lines whose peak height ratio were 1:2:1. ESR parameters of the triplet lines agreed with those of the corresponding dichloro-psemiquinone radical. Ozonation of 2,4,5- and 2,4,6-trichlorophenol gave the same spectra as those of 2,5- and 2,6-dichlorophenol, respectively, indicating that a chlorine group in p-position is substituted with a hydroxy group during ozonation. Amounts of the radical increased in an ozone-concentration dependent manner and were inhibited by addition of hydroxyl radical scavengers. These results suggest that p-semiquinone radicals are generated from the chlorophenols by hydroxyl radicals during ozonation. The p-semiquinone radicals were at least partly responsible for enhancements of DMPO-OH generation.


2014 ◽  
Vol 42 (2) ◽  
pp. 450-456 ◽  
Author(s):  
Paul J. Beisswenger

Diabetic complications are major health problems worldwide, with the cost of caring for diabetes rising to US$245 billion in 2012 in the U.S.A. alone. It is widely recognized that non-enzymatic glycation in diabetes is a major cause of damage and dysfunction of key vascular cells. MG (methylglyoxal) is directly toxic to tissues, and is a major precursor of AGEs (advanced glycation end-products). Various propensities to diabetic complications are seen among individuals with diabetes, with accelerated rates occurring in some individuals with modest hyperglycaemia, while others never progress in spite of poor glycaemic control over many years. Since production and detoxification of MG is ultimately controlled by enzymatic mechanisms, both genetic and environmental factors could regulate tissue glycation and potentially account for these variable complication rates. Activation of pathways that determine MG levels occurs in susceptible patients, indicting an important role in pathogenesis. MG leads to formation of specific AGEs, which are likely to predict propensity to diabetic complications. We have shown recently that three specific plasma AGE biomarkers [MG-H1 (MG-derived hydroimidazolones), CEL (Nε-carboxyethyl-lysine) and CML (Nε-carboxymethyl-lysine)] predict biopsy-documented fast DN (diabetic nephropathy) progression. Since two of the predictive biomarkers are MG end-products, these outcomes support a role for MG in the development of DN. Our studies on MG and its end-products have also shown anti-complication effects of the drug metformin, which binds and inactivates MG, thus reducing MG-related AGEs. We have also shown that reducing post-meal glucose decreases MG levels, as well as levels of MG-related AGEs. Our clinical outcome studies have been based on the novel concept that the unique glycation products that we can measure reflect the activity of specific chemical pathways that are selectively activated by hyperglycaemia in patients that are inherently more susceptible to diabetic complications, and can be used to solve other diabetes-related medical questions.


Sign in / Sign up

Export Citation Format

Share Document