Enhancement of hydroxyl radical generation by phenols and their reaction intermediates during ozonation

1998 ◽  
Vol 38 (6) ◽  
pp. 147-154 ◽  
Author(s):  
Hideo Utsumi ◽  
Sang-Kuk Han ◽  
Kazuhiro Ichikawa

Generation of hydroxyl radicals, one of the major active species in ozonation of water was directly observed with a spin-trapping/electron spin resonance (ESR) technique using 5,5-dimethyl-1-pyrrolineN-oxide (DMPO) as a spin-trapping reagent. Hydroxyl radical were trapped with DMPO as a stable radical, DMPO-OH. Eighty μM of ozone produced 1.08 X 10-6M of DMPO-OH, indicating that 1.4% of •OH is trapped with DMPO. Generation rate of DMPO-OH was determined by ESR/stopped-flow measurement. Phenol derivatives increased the amount and generation rate of DMPO-OH, indicating that phenol derivatives enhance •OH generation during ozonation of water. Ozonation of 2,3-, 2,5-, 2,6-dichlorophenol gave an ESR spectra of triplet lines whose peak height ratio were 1:2:1. ESR parameters of the triplet lines agreed with those of the corresponding dichloro-psemiquinone radical. Ozonation of 2,4,5- and 2,4,6-trichlorophenol gave the same spectra as those of 2,5- and 2,6-dichlorophenol, respectively, indicating that a chlorine group in p-position is substituted with a hydroxy group during ozonation. Amounts of the radical increased in an ozone-concentration dependent manner and were inhibited by addition of hydroxyl radical scavengers. These results suggest that p-semiquinone radicals are generated from the chlorophenols by hydroxyl radicals during ozonation. The p-semiquinone radicals were at least partly responsible for enhancements of DMPO-OH generation.

2010 ◽  
Vol 38 (06) ◽  
pp. 1093-1106 ◽  
Author(s):  
Xing-Tai Li ◽  
Hong-Cheng Li ◽  
Chun-Bin Li ◽  
De-Qiang Dou ◽  
Ming-Bo Gao

Cordyceps militaris (L.) Link is an entomopathogenic fungus parasitic to Lepidoptera larvae, and is widely used as a folk tonic or invigorant for longevity in China. Although C. militaris has been used in traditional Chinese medicine for millennia, there is still a lack convincing evidence for its anti-aging activities. This study was performed to investigate the effects of polysaccharides from cultivated fruiting bodies of C. militaris (CMP) on mitochondrial injury, antioxidation and anti-aging activity. Fruiting bodies of C. militaris were cultivated artificially under optimized conditions. The spectrophotometric method was used to measure thiobarbituric acid reactive substances (TBARS), mitochondrial swelling, and activities of scavenging superoxide anions in vitro. D-galactose (100 mg/kg/day) was injected subcutaneously into back of the neck of mice for 7 weeks to induce an aging model. The effects of CMP on the activities of catalase (CAT), surperoxide dismutase (SOD), glutathione peroxidase (GPx) and anti-hydroxyl radicals were assayed in vivo using commercial monitoring kits. The results showed that CMP could inhibit mitochondrial injury and swelling induced by Fe2+ -L-Cysteine in a concentration- dependent manner and it also had a significant superoxide anion scavenging effect. Moreover, the activities of CAT, SOD, GPx and anti-hydroxyl radicals in mice liver were increased significantly by CMP. These results indicate that CMP protects mitochondria by scavenging reactive oxygen species (ROS), inhibiting mitochondrial swelling, and increasing the activities of antioxidases. Therefore, CMP may have pharmaceutical values for mitochondrial protection and anti-aging. CMP was the major bioactive component in C. militaris.


2019 ◽  
Author(s):  
Jason A. Coral ◽  
Christopher L. Kitchens

ABSTRACTIncreased use of titanium dioxide (TiO2) nanoparticles in different applications has increased risk for adverse environmental implications based on an elevated likelihood of organism exposure. Anatase TiO2 is photoactive with exposure to ultraviolet light. TiO2 nanoparticle exposure to UV-A radiation in aquatic environments generates hydroxyl radical species, which may ultimately be responsible increased organism toxicity. The present research demonstrates that the rate of radical generation heavily depends on exposure conditions, particularly the presence of natural organic matter (NOM). Environmentally relevant concentrations of TiO2 nanoparticles were co-exposed to increasing NOM amounts (measured as concentration of dissolved organic carbon (DOC)) and UV-A intensities. Hydroxyl radical generation rate was determined using fluorescence spectroscopy. Radical generation rate was positively correlated to increases in TiO2 concentration and UV-A intensity, and negatively correlated to increased DOC concentration. Nanoparticle aggregation over time and decrease in light transmission from NOM had negligible contributions to the generation rate. This suggests the decreased radical generation rate is a result of radical quenching by NOM functionalities. D. magna toxicity to hydroxyl radicals is also demonstrated to decreased following the addition of DOC. These results correlate with the rate generation data, indicating that DOC provides rate attenuation that is protection to organisms. These conclusions demonstrate the importance considering exposure conditions during TiO2 toxicity testing, and during TiO2 waste management and regulatory decisions.


1987 ◽  
Vol 241 (2) ◽  
pp. 409-414 ◽  
Author(s):  
S Cockcroft ◽  
J A Taylor

Fluoride and guanosine 5′-[gamma-thio]triphosphate (GTP gamma S) both activate the hepatocyte membrane polyphosphoinositide phosphodiesterase (PPI-pde) in a concentration-dependent manner. AlCl3 enhances the fluoride effect, supporting the concept that [A1F4]- is the active species. Analysis of the products of inositol lipid hydrolysis demonstrate that phosphatidylinositol bisphosphate is the major lipid to be hydrolysed. Guanosine 5′-[beta-thio]diphosphate (GDP beta S) is an inhibitor of activation of PPI-pde by both fluoride and GTP gamma S. These observations suggest that the guanine nucleotide regulatory protein (termed Gp) bears a structural resemblance to the well-characterized G-proteins of the adenylate cyclase system and the cyclic GMP phosphodiesterase system in phototransduction.


2012 ◽  
Vol 479-481 ◽  
pp. 605-610 ◽  
Author(s):  
Jing Chen ◽  
Miao Ping Tian ◽  
Shang Gui Deng ◽  
Xu Bo Fang

Complex enzymes, including cellulase, pectinase and neutral protease were used for extraction of laminaria polysaccharides, which have a broad range of applications in the food, pharmaceutical, agricultural and chemical industries. The enzymatic extraction conditions were optimized and the maximum polysaccharides yield was achieved with the addition of 2.5% of enzymes under a pH value of 5.0 and temperature of 55 °C for 210 min. Polysaccharides prepared under the above conditions were effective against some pathogenic and spoilage microorganisms, including Salmonella sp, Bacillus subtilis, Enterococcus faecalis, Proteus vulgaris, Staphylococcus aureus, Escherichia coli, Pseudomonas fluorescens, with a diameter range of 5.1 ± 0.29-12.5 ± 0.78 mm. In addition, antioxidant activity of laminaria polysaccharides against hydroxyl radicals was also investigated and it was observed that the polysaccharides displayed obvious scavenging activity on hydroxyl radicals in concentration-dependent manner. Overall, polysaccharides from Laminaria Japonica demonstrated potential applications in food safety and control.


2015 ◽  
Vol 61 (2) ◽  
pp. 3-10
Author(s):  
Ljubica Adji Andov ◽  
Marija Karapandzova ◽  
Blagica Jovanova ◽  
Gjose Stefkov ◽  
Ivana Cvetkovikj Karanfilova ◽  
...  

Evaluation of the antioxidant potential of methanol extract of Chenopodium botrys L. (Amaranthaceae) collected from six different locations in Republic of Macedonia was performed. Several methods were used for testing the antioxidative activity: 1) 2,2-diphenyl1-picrylhydrazyl (DPPH) radical scavenging assay, 2) ferric reduction power assay (FRAP), 3) inhibition of H2 O2 activity, 4) non-sitespecific hydroxyl radical-catalyzed 2-deoxy-D-ribose degradation (NSSOH) and 5) site-specific hydroxyl radical-catalyzed 2-deoxy-D-ribose degradation (SSOH). The IC50 values ranged from 0.26-3.10 mg/mL, 3.01-12.71 mg/mL and 2.60-12.29 mg/mL, for DPPH, NSSOH and SSOH assays, respectively. The H2 O2 inhibition activity and the ferric reducing power capacity were from 28.84-46.56% and 26.14- 43.40%, respectively. The obtained data establish the antioxidant potency in concentration-dependent manner. Additionally, total phenols (TPC) and total flavonoid content (TFC) were determined. The estimated values ranged from 27.77-71.25 mg GAE/g DW and from 7.35- 16.33 mg QE/g DW, respectively


2014 ◽  
Vol 84 (1-2) ◽  
pp. 79-91 ◽  
Author(s):  
Amin F. Majdalawieh ◽  
Hyo-Sung Ro

Background: Foam cell formation resulting from disrupted macrophage cholesterol efflux, which is triggered by PPARγ1 and LXRα, is a hallmark of atherosclerosis. Sesamin and sesame oil exert anti-atherogenic effects in vivo. However, the exact molecular mechanisms underlying such effects are not fully understood. Aim: This study examines the potential effects of sesamin (0, 25, 50, 75, 100 μM) on PPARγ1 and LXRα expression and transcriptional activity as well as macrophage cholesterol efflux. Methods: PPARγ1 and LXRα expression and transcriptional activity are assessed by luciferase reporter assays. Macrophage cholesterol efflux is evaluated by ApoAI-specific cholesterol efflux assays. Results: The 50 μM, 75 μM, and 100 μM concentrations of sesamin up-regulated the expression of PPARγ1 (p< 0.001, p < 0.001, p < 0.001, respectively) and LXRα (p = 0.002, p < 0.001, p < 0.001, respectively) in a concentration-dependent manner. Moreover, 75 μM and 100 μM concentrations of sesamin led to 5.2-fold (p < 0.001) and 6.0-fold (p<0.001) increases in PPAR transcriptional activity and 3.9-fold (p< 0.001) and 4.2-fold (p < 0.001) increases in LXR transcriptional activity, respectively, in a concentration- and time-dependent manner via MAPK signaling. Consistently, 50 μM, 75 μM, and 100 μM concentrations of sesamin improved macrophage cholesterol efflux by 2.7-fold (p < 0.001), 4.2-fold (p < 0.001), and 4.2-fold (p < 0.001), respectively, via MAPK signaling. Conclusion: Our findings shed light on the molecular mechanism(s) underlying sesamin’s anti-atherogenic effects, which seem to be due, at least in part, to its ability to up-regulate PPARγ1 and LXRα expression and transcriptional activity, improving macrophage cholesterol efflux. We anticipate that sesamin may be used as a therapeutic agent for treating atherosclerosis.


1992 ◽  
Vol 68 (05) ◽  
pp. 570-576 ◽  
Author(s):  
Mary A Selak

SummaryWe have previously demonstrated that human neutrophil cathepsin G is a strong platelet agonist that binds to a specific receptor. This work describes the effect of neutrophil elastase on cathepsin G-induced platelet responses. While platelets were not activated by high concentrations of neutrophil elastase by itself, elastase enhanced aggregation, secretion and calcium mobilization induced by low concentrations of cathepsin G. Platelet aggregation and secretion were potentiated in a concentration-dependent manner by neutrophil elastase with maximal responses observable at 200 nM. Enhancement was observed when elastase was preincubated with platelets for time intervals of 10–60 s prior to addition of a low concentration of cathepsin G and required catalytically-active elastase since phenylmethanesulphonyl fluoride-inhibited enzyme failed to potentiate cell activation. Neutrophil elastase potentiation of platelet responses induced by low concentrations of cathepsin G was markedly inhibited by creatine phosphate/creatine phosphokinase and/or indomethacin, indicating that the synergism between elastase and cathepsin G required the participation of ADP and thromboxane A2. On the other hand, platelet responses were not attenuated by the PAF antagonist BN 52021, signifying that PAF-acether did not play a role in elastase potentiation. At higher concentrations porcine pancreatic elastase exhibits similar effects to neutrophil elastase, demonstrating that the effect of elastase was not unique to the neutrophil protease. While neutrophil elastase failed to alter the ability of cathepsin G to hydrolyze a synthetic chromogenic substrate, preincubation of platelets with elastase increased the apparent affinity of cathepsin G binding to platelets. In contrast to their effect on cathepsin G-induced platelet responses, neither neutrophil nor pancreatic elasatse potentiated aggregation or dense granule release initiated by ADP, PAF-acether, arachidonic acid or U46619, a thromboxane A2 mimetic. Moreover, unlike its effect on cathepsin G, neutrophil elastase inhibited thrombin-induced responses. The current observations demonstrate that elastase can potentiate platelet responses mediated by low concentrations of cathepsin G, suggesting that both enzymes may function synergistically to activate platelets under conditions where neutrophil degranulation occurs.


1993 ◽  
Vol 69 (03) ◽  
pp. 286-292 ◽  
Author(s):  
Che-Ming Teng ◽  
Feng-Nien Ko ◽  
Inn-Ho Tsai ◽  
Man-Ling Hung ◽  
Tur-Fu Huang

SummaryTrimucytin is a potent platelet aggregation inducer isolated from Trimeresurus mucrosquamatus snake venom. Similar to collagen, trimucytin has a run of (Gly-Pro-X) repeats at the N-terminal amino acids sequence. It induced platelet aggregation, ATP release and thromboxane formation in rabbit platelets in a concentration-dependent manner. The aggregation was not due to released ADP since it was not suppressed by creatine phosphate/creatine phosphokinase. It was not either due to thromboxane A2 formation because indomethacin and BW755C did not have any effect on the aggregation even thromboxane B2 formation was completely abolished by indomethacin. Platelet-activating factor (PAF) was not involved in the aggregation since a PAF antagonist, kadsurenone, did not affect. However, RGD-containing peptide triflavin inhibited the aggregation, but not the release of ATP, of platelets induced by trimucytin. Indomethacin, mepacrine, prostaglandin E1 and tetracaine inhibited the thromboxane B2 formation of platelets caused by collagen and trimucytin. Forskolin and sodium nitroprusside inhibited both platelet aggregation and ATP release, but not the shape change induced by trimucytin. In quin-2 loaded platelets, the rise of intracellular calcium concentration caused by trimucytin was decreased by 12-O-tetradecanoyl phorbol-13 acetate, imipramine, TMB-8 and indomethacin. In the absence of extracellular calcium, both collagen and trimucytin caused no thromboxane B2 formation, but still induced ATP release which was completely blocked by R 59022. Inositol phosphate formation in platelets was markedly enhanced by trimucytin and collagen. MAB1988, an antibody against platelet membrane glycoprotein Ia, inhibited trimucytinand collagen-induced platelet aggregation and ATP release. However, trimucytin did not replace the binding of 125I-labeled MAB1988 to platelets. Platelets pre-exposed to trimucytin were resistant to the second challenge with trimucytin itself or collagen. It is concluded that trimucytin may activate collagen receptors on platelet membrane, and cause aggregation and release mainly through phospholipase C-phosphoinositide pathway.


2018 ◽  
Author(s):  
Luke Jordan ◽  
Nathan Wittenberg

This is a comprehensive study of the effects of the four major brain gangliosides (GM1, GD1b, GD1a, and GT1b) on the adsorption and rupture of phospholipid vesicles on SiO2 surfaces for the formation of supported lipid bilayer (SLB) membranes. Using quartz crystal microbalance with dissipation monitoring (QCM-D) we show that gangliosides GD1a and GT1b significantly slow the SLB formation process, whereas GM1 and GD1b have smaller effects. This is likely due to the net ganglioside charge as well as the positions of acidic sugar groups on ganglioside glycan head groups. Data is included that shows calcium can accelerate the formation of ganglioside-rich SLBs. Using fluorescence recovery after photobleaching (FRAP) we also show that the presence of gangliosides significantly reduces lipid diffusion coefficients in SLBs in a concentration-dependent manner. Finally, using QCM-D and GD1a-rich SLB membranes we measure the binding kinetics of an anti-GD1a antibody that has similarities to a monoclonal antibody that is a hallmark of a variant of Guillain-Barre syndrome.


Sign in / Sign up

Export Citation Format

Share Document