scholarly journals An example of a non-Borel locally-connected finite-dimensional topological group

2017 ◽  
Vol 9 (1) ◽  
pp. 3-5
Author(s):  
I.Ya. Banakh ◽  
T.O. Banakh ◽  
M.I. Vovk

According to a classical theorem of Gleason and Montgomery, every finite-dimensional locally path-connected topological group is a Lie group. In the paper for every $n\ge 2$ we construct a locally connected subgroup $G\subset{\mathbb R}^{n+1}$ of dimension $\dim(G)=n$, which is not locally compact. This answers a question posed by S. Maillot on MathOverflow and shows that the local path-connectedness in the result of Gleason and Montgomery can not be weakened to the local connectedness.

1952 ◽  
Vol 4 ◽  
pp. 89-96
Author(s):  
Masatake Kuranishi

Let G be a locally compact topological group and let U be a neighborhood of the identity in G. A curve g(λ) (|λ| ≦ 1) in G, which satisfies the conditions, g(s)g(t) = g(s + t) (|s|, |f|, |s + t| ≦ l),is called a one-parameter subgroup of G. If there exists a neighborhood U1 of the identity in G such that for every element x of U1 there exists a unique one-parameter subgroup g(λ) which is contained in U and g(1) =x, we shall call, for the sake of simplicity, that U has the property (S). It is well known that the neighborhoods of the identity in a Lie group have the property (S). More generally it is proved that if G is finite dimensional, locally connected, and is without small subgroups, G has the same property. In this note, these theorems will be generalized to the case when G is unite dimensional and without small subgroups.


Author(s):  
Jacek Brodzki ◽  
Erik Guentner ◽  
Nigel Higson ◽  
Shintaro Nishikawa

Abstract We give a new proof of the Baum–Connes conjecture with coefficients for any second countable, locally compact topological group that acts properly and cocompactly on a finite-dimensional CAT(0)-cubical space with bounded geometry. The proof uses the Julg–Valette complex of a CAT(0)-cubical space introduced by the 1st three authors and the direct splitting method in Kasparov theory developed by the last author.


2018 ◽  
Vol 30 (2) ◽  
pp. 295-320
Author(s):  
Dikran Dikranjan ◽  
Dmitri Shakhmatov

AbstractWe provide characterizations of Lie groups as compact-like groups in which all closed zero-dimensional metric (compact) subgroups are discrete. The “compact-like” properties we consider include (local) compactness, (local) ω-boundedness, (local) countable compactness, (local) precompactness, (local) minimality and sequential completeness. Below is A sample of our characterizations is as follows:(i) A topological group is a Lie group if and only if it is locally compact and has no infinite compact metric zero-dimensional subgroups.(ii) An abelian topological groupGis a Lie group if and only ifGis locally minimal, locally precompact and all closed metric zero-dimensional subgroups ofGare discrete.(iii) An abelian topological group is a compact Lie group if and only if it is minimal and has no infinite closed metric zero-dimensional subgroups.(iv) An infinite topological group is a compact Lie group if and only if it is sequentially complete, precompact, locally minimal, contains a non-empty open connected subset and all its compact metric zero-dimensional subgroups are finite.


Author(s):  
A. L. Carey ◽  
W. Moran

AbstractLet G be a second countable locally compact group possessing a normal subgroup N with G/N abelian. We prove that if G/N is discrete then G has T1 primitive ideal space if and only if the G-quasiorbits in Prim N are closed. This condition on G-quasiorbits arose in Pukanzky's work on connected and simply connected solvable Lie groups where it is equivalent to the condition of Auslander and Moore that G be type R on N (-nilradical). Using an abstract version of Pukanzky's arguments due to Green and Pedersen we establish that if G is a connected and simply connected Lie group then Prim G is T1 whenever G-quasiorbits in [G, G] are closed.


2008 ◽  
Vol 78 (1) ◽  
pp. 171-176 ◽  
Author(s):  
JANUSZ BRZDȨK

AbstractWe give some general results concerning continuity of measurable homomorphisms of topological groups. As a consequence we show that a Christensen measurable homomorphism of a Polish abelian group into a locally compact topological group is continuous. We also obtain similar results for the universally measurable homomorphisms and the homomorphisms that have the Baire property.


2020 ◽  
pp. 1-18
Author(s):  
NIKOLAI EDEKO

Abstract We consider a locally path-connected compact metric space K with finite first Betti number $\textrm {b}_1(K)$ and a flow $(K, G)$ on K such that G is abelian and all G-invariant functions $f\,{\in}\, \text{\rm C}(K)$ are constant. We prove that every equicontinuous factor of the flow $(K, G)$ is isomorphic to a flow on a compact abelian Lie group of dimension less than ${\textrm {b}_1(K)}/{\textrm {b}_0(K)}$ . For this purpose, we use and provide a new proof for Theorem 2.12 of Hauser and Jäger [Monotonicity of maximal equicontinuous factors and an application to toral flows. Proc. Amer. Math. Soc.147 (2019), 4539–4554], which states that for a flow on a locally connected compact space the quotient map onto the maximal equicontinuous factor is monotone, i.e., has connected fibers. Our alternative proof is a simple consequence of a new characterization of the monotonicity of a quotient map $p\colon K\to L$ between locally connected compact spaces K and L that we obtain by characterizing the local connectedness of K in terms of the Banach lattice $\textrm {C}(K)$ .


Author(s):  
Klaus Thomsen

SynopsisWe consider automorphic actions on von Neumann algebras of a locally compact group E given as a topological extension 0 → A → E → G → 0, where A is compact abelian and second countable. Motivated by the wish to describe and classify ergodic actions of E when G is finite, we classify (up to conjugacy) first the ergodic actions of locally compact groups on finite-dimensional factors and then compact abelian actions with the property that the fixed-point algebra is of type I with atomic centre. We then handle the case of ergodic actions of E with the property that the action is already ergodic when restricted to A, and then, as a generalisation, the case of (not necessarily ergodic) actions of E with the property that the restriction to A is an action with abelian atomic fixed-point algebra. Both these cases are handled for general locally compact-countable G. Finally, we combine the obtained results to classify the ergodic actions of E when G is finite, provided that either the extension is central and Hom (G, T) = 0, or G is abelian and either cyclic or of an order not divisible by a square.


1989 ◽  
Vol 105 (2) ◽  
pp. 253-261 ◽  
Author(s):  
K. H. Hofmann ◽  
T. S. Wu ◽  
J. S. Yang

Dense immersions occur frequently in Lie group theory. Suppose that exp: g → G denotes the exponential function of a Lie group and a is a Lie subalgebra of g. Then there is a unique Lie group ALie with exponential function exp:a → ALie and an immersion f:ALie→G whose induced morphism L(j) on the Lie algebra level is the inclusion a → g and which has as image an analytic subgroup A of G. The group Ā is a connected Lie group in which A is normal and dense and the corestrictionis a dense immersion. Unless A is closed, in which case f' is an isomorphism of Lie groups, dim a = dim ALie is strictly smaller than dim h = dim H.


1999 ◽  
Vol 19 (3) ◽  
pp. 559-569
Author(s):  
D. BENARDETE ◽  
S. G. DANI

Given a Lie group $G$ and a lattice $\Gamma$ in $G$, a one-parameter subgroup $\phi$ of $G$ is said to be rigid if for any other one-parameter subgroup $\psi$, the flows induced by $\phi$ and $\psi$ on $\Gamma\backslash G$ (by right translations) are topologically orbit-equivalent only if they are affinely orbit-equivalent. It was previously known that if $G$ is a simply connected solvable Lie group such that all the eigenvalues of $\mathrm{Ad} (g) $, $g\in G$, are real, then all one-parameter subgroups of $G$ are rigid for any lattice in $G$. Here we consider a complementary case, in which the eigenvalues of $\mathrm{Ad} (g)$, $g\in G$, form the unit circle of complex numbers.Let $G$ be the semidirect product $N \rtimes M$, where $M$ and $N$ are finite-dimensional real vector spaces and where the action of $M$ on the normal subgroup $N$ is such that the center of $G$ is a lattice in $M$. We prove that there is a generic class of abelian lattices $\Gamma$ in $G$ such that any semisimple one-parameter subgroup $\phi$ (namely $\phi$ such that $\mathrm{Ad} (\phi_t)$ is diagonalizable over the complex numbers for all $t$) is rigid for $\Gamma$ (see Theorem 1.4). We also show that, on the other hand, there are fairly high-dimensional spaces of abelian lattices for which some semisimple $\phi$ are not rigid (see Corollary 4.3); further, there are non-rigid semisimple $\phi$ for which the induced flow is ergodic.


2014 ◽  
Vol 12 (1) ◽  
pp. 1-13
Author(s):  
Indranil Biswas ◽  
Andrei Teleman

AbstractLet X be a differentiable manifold endowed with a transitive action α: A×X→X of a Lie group A. Let K be a Lie group. Under suitable technical assumptions, we give explicit classification theorems, in terms of explicit finite dimensional quotients, of three classes of objects:equivalence classes of α-invariant K-connections on X α-invariant gauge classes of K-connections on X, andα-invariant isomorphism classes of pairs (Q,P) consisting of a holomorphic Kℂ-bundle Q → X and a K-reduction P of Q (when X has an α-invariant complex structure).


Sign in / Sign up

Export Citation Format

Share Document