scholarly journals Features of Structural, Energy and Kinetic Characteristics of Hf1-xErxNiSn Solid Solution

2016 ◽  
Vol 17 (4) ◽  
pp. 552-558
Author(s):  
L.P. Romaka ◽  
P.-F. Rogl ◽  
A.M. Нoryn ◽  
V.V. Romaka ◽  
V.Ya. Krayovskyy ◽  
...  

1-xErxNiSn solid solution in the range: T = 80 – 400 K, x = 0 - 0.10. It was confirmed partly disorder crystal structure of HfNiSn compound as a result of occupation in the 4a crystallographic site of Hf (5d26s2) atoms by Ni (3d84s2) ones up to ~ 1 % that generates in the crystal structural defects of donor nature. It was shown that introduction of Er atoms ordered crystal structure (“healing” of structural defects). It was established mechanisms of simultaneous generation of structural defects as acceptors by substitution of Hf (5d26s2) by Er (4f125d06s2) atoms, and the donor nature defects as a result of the appearance of vacancies in the Sn (4b) atoms sites, which determines the mechanisms of conductivity for Hf1-xErxNiSn.

2016 ◽  
Vol 17 (2) ◽  
pp. 212-221
Author(s):  
L.P. Romaka ◽  
P.-F. Rogl ◽  
A.M. Нoryn ◽  
V.Ya. Krayovskyy ◽  
Yu.V. Stadnyk ◽  
...  

The features of structural, energy state and electrokinetic characteristics were investigated for Hf1‑xTmxNiSn solid solution in the range: T = 80 - 400 K, x = 0 - 0.40. It was confirmed partly disorder crystal structure of HfNiSn compound as a result of occupation in the 4a crystallographic site of Hf (5d26s2) atoms by Ni (3d84s2) ones up to ~ 1 % that generates in the crystal structural defects of donor nature. It was shown that introduction of Tm atoms ordered crystal structure (“healing” of structural defects). It was established mechanisms of simultaneous generation of structural defects as acceptors by substitution of Hf (5d26s2) by Tm (4f135d06s2) atoms, and the donor nature defects as a result of the appearance of vacancies in the Sn (4b) atoms sites, which determines the mechanisms of conductivity for Hf1-xTmxNiSn.


2019 ◽  
Vol 20 (3) ◽  
pp. 275-281
Author(s):  
L. Romaka ◽  
Yu. Stadnyk ◽  
V.A. Romaka ◽  
A. Нoryn ◽  
I. Romaniv ◽  
...  

The samples of ZrNi1-хVxSn solid solution (x = 0 – 0.10) based on the ZrNiSn half-Heusler phase (MgAgAs structure type) were synthesized by direct arc-melting with homogenous annealing at 1073 K. The electrokinetic and energy state characteristics of the ZrNi1-хVxSn semiconducting solid solution were investigated in the temperature range T = 80 - 400 K. An analysis of behavior of the electrokinetic and energetic characteristics, in particular, the motion rate of the Fermi level, ΔεF/Δx for ZrNi1-хVxSn, allows to assume about the simultaneous generation of the structural defects of donor and acceptor nature in the crystal. The additional researches are required to establish the mechanisms of donor generation.


2017 ◽  
Vol 18 (1) ◽  
pp. 41-48
Author(s):  
L.P. Romaka ◽  
A.M. Нoryn ◽  
Yu.V. Stadnyk ◽  
V.Ya. Krayovskyy ◽  
V.A. Romaka ◽  
...  

Features of structural, electrokinetic, and energy state characteristics of ZrNiSn1-xGax semiconductive solid solution were investigated in the temperature ranges Т = 80 - 400 K and х = 0 - 0.15. Disorder of crystal structure for n-ZrNiSn compound as a result of occupation of Zr (4d25s2) atoms in 4a sites by Ni (3d84s2) ones up to ~ 1 % was confirmed. It generated donor levels band ɛD1 in the band gap. It was shown that introduction of Ga (4s24p1) atoms by means of substitution of Sn (5s25p2) ones ordered crystal structure. In this case acceptor defects were generated in 4b sites and it created extended acceptor impurity band ɛА. It was suggested that with generation of acceptor structural defects the vacancies in the Sn (4b) atomic sites simultaneously generated donor defects and formed deep donor band ɛD2 (donor-acceptor pair took place).


2019 ◽  
Vol 20 (2) ◽  
pp. 127-132
Author(s):  
Yu.V. Stadnyk ◽  
V.V. Romaka ◽  
V.A. Romaka ◽  
A.M. Нoryn ◽  
L.P. Romaka ◽  
...  

The peculiarities of electronic and crystal structures of Zr1-xVxNiSn (x = 0 - 0.10) semiconductive solid solution were investigated. To predict Fermi level εF behavior, band gap εg and electrokinetic characteristics of Zr1-xVxNiSn, the distribution of density of electronic states (DOS) was calculated. The mechanism of simultaneous generation of structural defects of donor and acceptor nature was determined based on the results of calculations of electronic structure and measurement of electrical properties of Zr1-xVxNiSn semiconductive solid solution. It was established that in the band gap of Zr1-xVxNiSn the energy states of the impurity donor εD2 and acceptor εA1 levels (donor-acceptor pairs) appear, which determine the mechanisms of conduction of semiconductor.


2017 ◽  
Vol 18 (2) ◽  
pp. 187-193
Author(s):  
L.P. Romaka ◽  
Yu.V. Stadnyk ◽  
V.V. Romaka ◽  
V.Ya. Krayovsky ◽  
P.-F. Rogl ◽  
...  

The mechanism of simultaneous generation of donor-acceptor pairs in ZrNiSn1-xGax semiconductor solid solution is established. The modeled distribution of atoms in the crystal lattice of ZrNiSn1-xGax showed that the speed of movement of Fermi level εF, obtained from the band structure calculations is in agreement with experimental extracted from lnρ(1/T) dependencies. It is shown that with substitution of Sn (5s25p2) with Ga (4s24p1) atoms in 4b crystallographic site both acceptor and donor (vacancies in 4b site) defects are generated.


2020 ◽  
Vol 21 (1) ◽  
pp. 73-81
Author(s):  
Yu. Stadnyk ◽  
V. Romaka ◽  
A. Нoryn ◽  
L. Romaka ◽  
V. Krayovskyy ◽  
...  

The effect of doping of the TiCoSb compound (MgAgAs structure type) by Mo atoms on the features of the structural characteristics and behavior of the electrokinetic, energetic and magnetic properties of the Ti1-xMoxCoSb semiconducting solid solution (х = 0 - 0.06) in the temperature interval 80 - 400 K was studied. It was shown that including of Mo atoms (rМо= 0.140 nm) in the ToCoSb structure by substitution of Ti atoms (rТі= 0.146 нм) in 4a position is accompanied with non-monotonous variation of the lattice parameter values а(х), indicating unpredictable structural changes. Based on analysis of the variation of the electric resistivity values, thermopower coefficient, magnetic susceptibility and energetic characteristics, it was concluded that simultaneous generation in the crystal of the structural defects of the donor and acceptor nature (donor-acceptor pairs), which generate corresponding energy levels in the band gap of semiconductor and determine its electrical conductivity.


2019 ◽  
Vol 20 (1) ◽  
pp. 33-39
Author(s):  
V. Romaka ◽  
L. Romaka ◽  
Y. Stadnyk ◽  
A. Horyn ◽  
V. Krayovskyy ◽  
...  

Structural, electrokinetic and energy state characteristics of the Zr1-xVxNiSn semiconductive solid solution (х=0–0.10) were investigated in the temperature interval 80–400 К. It was shown that doping of the ZrNiSn compound by V atoms (rV=0.134 nm) due to substitution of Zr (rZr=0.160 nm) results in increase of lattice parameter а(х) of Zr1-xVxNiSn indicating unforecast structural change. Based on analysis of the motion rate of the Fermi level ΔεF/Δх for Zr1-xVxNiSn in direction of the conduction band it was concluded about simultaneous generation of the structural defects of the donor and acceptor nature (donor-acceptor pairs) by unknown mechanism and creation of the corresponding energy levels in the band gap of the semiconductor.


2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Aziz Ahmed ◽  
Seungwoo Han

AbstractN-type bismuth telluride (Bi2Te3) thin films were prepared on an aluminum nitride (AlN)-coated stainless steel foil substrate to obtain optimal thermoelectric performance. The thermal co-evaporation method was adopted so that we could vary the thin film composition, enabling us to investigate the relationship between the film composition, microstructure, crystal preferred orientation and thermoelectric properties. The influence of the substrate temperature was also investigated by synthesizing two sets of thin film samples; in one set the substrate was kept at room temperature (RT) while in the other set the substrate was maintained at a high temperature, of 300 °C, during deposition. The samples deposited at RT were amorphous in the as-deposited state and therefore were annealed at 280 °C to promote crystallization and phase development. The electrical resistivity and Seebeck coefficient were measured and the results were interpreted. Both the transport properties and crystal structure were observed to be strongly affected by non-stoichiometry and the choice of substrate temperature. We observed columnar microstructures with hexagonal grains and a multi-oriented crystal structure for the thin films deposited at high substrate temperatures, whereas highly (00 l) textured thin films with columns consisting of in-plane layers were fabricated from the stoichiometric annealed thin film samples originally synthesized at RT. Special emphasis was placed on examining the nature of tellurium (Te) atom based structural defects and their influence on thin film properties. We report maximum power factor (PF) of 1.35 mW/m K2 for near-stoichiometric film deposited at high substrate temperature, which was the highest among all studied cases.


2021 ◽  
pp. 153189
Author(s):  
Pham Van Mao ◽  
Tatsumi Arima ◽  
Yaohiro Inagaki ◽  
Kazuya Idemitsu ◽  
Daisuke Akiyama ◽  
...  

2002 ◽  
Vol 165 (2) ◽  
pp. 324-333 ◽  
Author(s):  
Olivier Cousin ◽  
Marielle Huve ◽  
Pascal Roussel ◽  
Olivier Perez ◽  
Hugo Steinfink

Sign in / Sign up

Export Citation Format

Share Document