scholarly journals Computer Modeling of Second-Order Recursive Digital Filters of the Automated Design Signaling System

2017 ◽  
Vol 18 (4) ◽  
pp. 484-486
Author(s):  
S. P. Novosyadly ◽  
R. V. Valter

In the article the analytical method of modeling software recursive digital filters of the second order with zeros on the circle of the single radius is presented. The corresponding algorithm of scaling of this composition of filters for signal CAD is developed.

2016 ◽  
Vol 25 (08) ◽  
pp. 1650094 ◽  
Author(s):  
Tian-Bo Deng

In the design of recursive digital filters, the stability of the recursive digital filters must be guaranteed. Furthermore, it is desirable to add a certain amount of margin to the stability so as to avoid the violation of stability due to some uncertain perturbations of the filter coefficients. This paper extends the well-known stability-triangle of the second-order digital filter into more general cases, which results in dented stability-triangles and generalized stability-triangle. The generalized stability-triangle can be viewed as a special case of the dented stability-triangles if the two upper bounds on the radii of the two poles are the same, which is a generalized version of the existing conventional stability-triangle and can guarantee the radii of the two poles of the second-order recursive digital filter below some prescribed upper bound. That is, it is able to provide a prescribed stability-margin in terms of the upper bound of the pole radii. As a result, the generalized stability-triangle increases the flexibility for guaranteeing a prescribed stability-margin. Since the generalized stability-triangle is parameterized by using the upper bound of pole radii, i.e., the stability-margin is parameterized as a function of the upper bound, the proposed generalized stability-triangle facilitates the stability-margin guarantee in the design of the second-order as well as high-order recursive digital filters.


Sign in / Sign up

Export Citation Format

Share Document