scholarly journals Isothermal section of the Ho–Cu–Sn ternary system at 670 K

2019 ◽  
Vol 19 (2) ◽  
pp. 139-146
Author(s):  
L. Romaka ◽  
I. Romaniv ◽  
V. Romaka ◽  
M. Konyk ◽  
A. Horyn ◽  
...  

The interaction of the components in the Ho-Cu-Sn ternary system was investigated at 670 K over the whole concentration range using X-ray diffraction and EPM analyses. Four ternary compounds were formed in the Ho–Cu–Sn system at 670 K: HoCuSn (LiGaGe type, space group P63mc), Ho3Cu4Sn4 (Gd3Cu4Ge4-type, space group Immm), HoCu5Sn (CeCu5Au-type, space group Pnma), and Ho1.9Cu9.2Sn2.8 (Dy1.9Cu9.2Sn2.8-type, space group P63/mmc). The formation of the interstitial solid solution based on HoSn2 (ZrSi2-type) binary compound up to 5 at. % Cu was found.

2018 ◽  
Vol 19 (1) ◽  
pp. 60-65
Author(s):  
L. P. Romaka ◽  
Yu. V. Stadnyk ◽  
V. V. Romaka ◽  
M. Konyk ◽  
R. Serkiz

The interaction of the components in the Gd-Mn-Sn ternary system was studied using the methods of X-ray and microstructure analyses, in the whole concentration range. The phase diagrams of the Gd-Mn-Sn system were constructed at 873 and 673 K. At both temperature of investigation the Gd-Mn-Sn system is characterized by existence of two ternary compounds: GdMn6Sn6 (MgFe6Ge6 structure type, space group P6/mmm) and Gd4Mn4Sn7 (Zr4Co4Ge7 structure type, space group I4/mmm). The formation of the interstitial solid solution GdMnхSn2 based on GdSn2 (ZrSi2-type) binary compound was found up to 10 at. % Mn at 873 K and 673 K. The existence of the substitutional solid solution based on GdMn2 (MgCu2-type) was observed up to 5 at.% Sn and 3 at. % Sn at 873 K and 673 K, respectively.


2019 ◽  
Vol 20 (4) ◽  
pp. 376-383
Author(s):  
M. Konyk ◽  
L. Romaka ◽  
Yu. Stadnyk ◽  
V.V. Romaka ◽  
R. Serkiz ◽  
...  

The isothermal section of the phase diagram of the Er–Cr–Ge ternary system was constructed at 1070 K over the whole concentration range using X-ray diffractometry, metallography and electron microprobe (EPM) analysis. The interaction between the elements in the Er−Cr−Ge system results in the formation of two ternary compounds: ErCr6Ge6 (MgFe6Ge6-type, space group P6/mmm, Pearson symbol hP13; a = 5.15149(3), c = 8.26250(7) Ǻ; RBragg = 0.0493, RF = 0.0574) and ErCr1-хGe2 (CeNiSi2-type, space group Cmcm, Pearson symbol oS16, a = 4.10271(5), b = 15.66525(17), c = 3.99017(4) Ǻ; RBragg = 0.0473, RF = 0.0433) at investigated temperature. For the ErCr1-xGe2 compound, the homogeneity region was determined (ErCr0.28-0.38Ge2; a = 4.10271(5)-4.1418(9), b = 15.6652(1)-15.7581(4), c = 3.99017(4)-3.9291(1) Ǻ).


2021 ◽  
Vol 22 (2) ◽  
pp. 248-254
Author(s):  
M. Konyk ◽  
L. Romaka ◽  
Yu. Stadnyk ◽  
V.V. Romaka ◽  
V. Pashkevych

The isothermal section of the phase diagram of the Gd–Cr–Ge ternary system was constructed at 1070 K over the whole concentration range using X-ray diffractometry, metallography and electron microprobe (EPM) analysis. Three ternary compounds are realized in the Gd–Cr–Ge system at the temperature of annealing: Gd117Cr52Ge112 (Tb117Fe52Ge112 structure type,  space group Fm-3m, Pearson symbol cF1124, a = 2.8971(6) nm), GdCr6Ge6 (SmMn6Sn6 structure type, space group P6/mmm, Pearson symbol hP16, a = 0.51797(2), c = 0.82901(4) nm) and GdCr1-хGe2 (CeNiSi2 structure type, space group Cmcm, Pearson symbol oS16, a = 0.41569(1)-0.41593(8), b = 1.60895(6)-1.60738(3), c = 0.40318(1)-0.40305(8) nm). For the GdCr1-xGe2 compound the homogeneity range was determined (x=0.73 – 0,69).


2019 ◽  
Vol 55 (2) ◽  
pp. 147-156 ◽  
Author(s):  
W.-Q. Ao ◽  
H.-Z. Yu ◽  
F.-L. Liu ◽  
F.-S. Liu ◽  
J.-Q. Li ◽  
...  

The isothermal section of the Ni-Mn-Sb ternary system at 773 K was measured by means of 117 alloys which were analyzed by using X-ray diffraction (XRD), scanning electron microscopy (SEM), energy dispersion spectroscopy (EDS), and electron probe microanalysis (EPMA) techniques. The existence of 7 binary compounds, namely NiMn, Mn2Sb, MnSb, NiSb2, NiSb, Ni5Sb2, Ni3Sb and 2 ternary compounds, namely Ni2MnSb and NiMnSb were confirmed for this isothermal section. The four binary compounds Ni3Sb (Cu3Ti structure, Pmmn space group), Ni5Sb2 (Ni5Sb2-type structure, C2 space group), NiSb2 (FeS2-type structure, Pnnm space group) and Mn2Sb (Cu2Sb-type structure, P4/nmm space group) in the binary systems Ni-Sb and Mn-Sb were stoichiometric compounds, the homogeneity ranges of which were negligible. However the five single phases in the Ni-Mn system and the two binary compounds MnSb and NiSb showed more or less homogeneity ranges formed by substitution of Mn and Sb for Ni atom. The Heusler compound ? (Ni2MnSb) has L21-type ordered structure with space group Fm-3m, a = 0.6017 nm. And the crystal structure for the Half-Heusler compound ? (NiMnSb) is C1b-type (F-43m) with a = 0.5961 nm. The approximate homogeneity ranges of the two ternary compounds ? and ? at 773 K were investigated.


2015 ◽  
Vol 70 (9) ◽  
pp. 665-670 ◽  
Author(s):  
Yuriy B. Tyvanchuk ◽  
Maryana Lukachuk ◽  
Rainer Pöttgen ◽  
Andrzej Szytuła ◽  
Yaroslav M. Kalychak

AbstractThe isothermal section of the Tm–Ni–In system at T = 870 K was constructed. Nine ternary compounds: Tm10Ni9In20, TmNi1–0.60In1–1.40, Tm2Ni2In, Tm2Ni1.78In, Tm5Ni2In4, Tm11Ni4In9, Tm4.83Ni2In1.17, Tm6Ni2In and Tm14Ni3In3 exist in the system at the temperature of investigation. Solid solutions with In/Ni and Tm/In mixing were noticed for numerous compounds. A broad substitution of Ni for In was observed for TmNi1–0.60In1–1.40, and of Tm for In for the TmNi2–TmNi4In section. An interstitial solid solution TmxNiIn, based on binary equiatomic NiIn, extends up to 8 at.% Tm (x = 0.17). The magnetic properties of TmNiIn, Tm2Ni2In and Tm5Ni2In4 are also reviewed.


2020 ◽  
Vol 21 (2) ◽  
pp. 272-278
Author(s):  
L. Romaka ◽  
Yu. Stadnyk ◽  
V. V. Romaka ◽  
A. Horpenyuk

Interaction between the components in the Ho-Fe-Sn ternary system was studied using X-ray diffractometry, metallography and electron microprobe analysis. Isothermal section of the phase diagram was constructed at 670 K over the whole concentration range. Component interaction in the Ho-Fe-Sn system at 670 K results in the existence of one ternary compound HoFe6Sn6 which crystallizes in the YCo6Ge6 structure type (space group P6/mmm, a=0.53797(2),   c= 0.44446(2) nm). The interstitial-type solid solution HoFexSn2 (up to 8 at.% Fe) based on the HoSn2 (ZrSi2-type structure) binary compound was found. Solubility of Sn in the HoFe2 binary (MgCu2 structure type) extends up to 5 at. %.


2013 ◽  
Vol 11 (4) ◽  
pp. 604-609 ◽  
Author(s):  
Mariya Dzevenko ◽  
Andriy Hamyk ◽  
Yuriy Tyvanchuk ◽  
Yaroslav Kalychak

AbstractIsothermal section of the Er-Co-In system at T = 870 K was constructed by means of X-ray powder diffraction, microstructure, and EDX-analyses. Twelve ternary compounds, namely ErCoIn5 (HoCoGa5-type), Er6Co17.92In14 (Lu6Co17.92In14-type), ErCo4In (MgCu4Sn-type), Er2CoIn8 (Ho2CoGa8-type), Er10Co9In20 (Ho10Ni9In20-type), Er3Co1.87In4 (Lu3Co1.87In4-type), ErCoIn, Er11Co4In9 (Nd11Pd4In9-type), Er11Co3In6, Er8CoIn3 (Pr8CoGa3-type), Er6Co2.19In0.81 (Ho6Co2Ga-type), and Er13.83Co2.88In3.10 (Lu14Co2In3-type) exist in the Er-Co-In system at this temperature. The crystal structure of the Er8CoIn3 compound was determined by means of X-ray powder method (Pr8CoGa3-type, P63mc space group, a = 1.02374(2) nm, c = 0.68759(2) nm). Almost none of the binary compounds dissolve the third component. The exception is the existence of the solid solution based on ErCo3 binary compound, which dissolves up to 8 at.% of In.


2011 ◽  
Vol 409 ◽  
pp. 51-56
Author(s):  
Shabnam Konica ◽  
Yi Nan Zhang ◽  
Dmytro Kevorkov ◽  
Mamoun Medraj

In this work, the partial isothermal section of the Al-Ca-Zn system in the region between 33.3 and 100 at.% Ca has been investigated at 350°C using key alloys. The actual composition of the alloys is measured by inductively coupled plasma technique. Phase relations and solubility limits of the binary and ternary compounds have been determined by means of electron probe microanalysis and X-ray diffraction. In the current work, a new ternary compound has been identified in this region with the Al9Ca31Zn10 (IM1) composition. Binary compound Al14Ca13 (IM2) has an extended solid solubility into the ternary system. The homogeneity ranges of the Al2Ca, the MgNi2-type C36 phase Al2-xCaZnx (0.28≤x≤0.70) (IM3) at 350°C and CaZn2 compounds in the pseudobinary Al2Ca-CaZn2 section have been determined at 350°C and the results are combined with the literature to construct the partial vertical Al2Ca-CaZn2 section and partial isothermal Al-Ca-Zn section at 350°C.


2020 ◽  
Vol 75 (8) ◽  
pp. 765-768
Author(s):  
Bohdana Belan ◽  
Dorota Kowalska ◽  
Mariya Dzevenko ◽  
Mykola Manyako ◽  
Roman Gladyshevskii

AbstractThe crystal structure of the phase Ce5AgxGe4−x (x = 0.1−1.08) has been determined using single-crystal X-ray diffraction data for Ce5Ag0.1Ge3.9. This phase is isotypic with Sm5Ge4: space group Pnma (No. 62), Pearson code oP36, Z = 4, a = 7.9632(2), b = 15.2693(5), c = 8.0803(2) Å; R1 = 0.0261, wR2 = 0.0460, 1428 F2 values and 48 variables. The two crystallographic positions 8d and 4c show Ge/Ag mixing, leading to a slight increase in the lattice parameters as compared to those of the pure binary compound Ce5Ge4.


Author(s):  
Nataliya L. Gulay ◽  
Rolf-Dieter Hoffmann ◽  
Jutta Kösters ◽  
Yaroslav M. Kalychak ◽  
Stefan Seidel ◽  
...  

Abstract The equiatomic indide ScPtIn (ZrNiAl type, space group P 6 ‾ $‾{6}$ 2m) shows an extended solid solution Sc3Pt3–xIn3. Several samples of the Sc3Pt3–xIn3 series were synthesized from the elements by arc-melting and subsequent annealing, or directly in a high frequency furnace. The lowest platinum content was observed for Sc3Pt2.072(3)In3. All samples were characterized by powder X-ray diffraction and their lattice parameters and several single crystals were studied on the basis of precise single crystal X-ray diffractometer data. The correct platinum occupancy parameters were refined from the diffraction data. Decreasing platinum content leads to decreasing a and c lattice parameters. Satellite reflections were observed for the Sc3Pt3–xIn3 crystals with x = 0.31–0.83. These satellite reflections could be described with a modulation vector ( 1 3 , 1 3 , γ ) $\left(\frac{1}{3},\frac{1}{3},\gamma \right)$ ( γ = 1 2 $\gamma =\frac{1}{2}$ c* for all crystals) and are compatible with trigonal symmetry. The interplay of platinum filled vs. empty In6 trigonal prisms is discussed for an approximant structure with space group P3m1.


Sign in / Sign up

Export Citation Format

Share Document