edx analyses
Recently Published Documents


TOTAL DOCUMENTS

154
(FIVE YEARS 63)

H-INDEX

12
(FIVE YEARS 3)

2022 ◽  
Vol 12 (1) ◽  
Author(s):  
Youngjin Seo ◽  
Dongkyoung Lee ◽  
Sukhoon Pyo

AbstractLaser cutting of intrusive rocks, including granite, gabbro, and diorite, is carried out in order to assess the cut characteristics through geometrical measurements, such as kerf width, melting width, and penetration depth. The absorption rate for each specimen at the wavelength of 1064 nm is measured using a spectrophotometer. A multimode fiber laser is used in this study with the power of 9 kW and different cutting speeds. Furthermore, nitrogen gas at 13 bar is applied as the assistant gas in order to remove the melted material effectively. As a result of the experiment, the relationship between the cutting speed and geometrical measurements is investigated. Furthermore, variations of penetration depth are performed in accordance with the number of laser cuts. In addition, through energy dispersive X-ray (EDX) element mapping, minerals that comprise the rocks are classified and characterized. Subsequently, the changes in the microstructure and chemical composition of each specimen, before and after laser cutting, are compared using scanning electron microscope (SEM) and EDX analyses. Experimental results demonstrate that the cutting characteristics vary, depending on the types of minerals that make up the rock. Based on a series of tests, it is identified that volume energy of more than 3.06E + 13 $$\mathrm{J}/{\mathrm{m}}^{3}$$ J / m 3 is required to fully cut intrusive rocks that have a thickness of 25 mm.


2021 ◽  
Author(s):  
Nur Sena Yüzbasi ◽  
Andac Armutlulu ◽  
Thomas Huthwelker ◽  
Paula Abdala ◽  
Christoph Müller

Chemical looping is an emerging technology to produce high purity hydrogen from fossil fuels or biomass with the simultaneous capture of the CO2 produced at the distributed scale. This process requires the availability of stable Fe2O3-based oxygen carriers. Fe2O3-Al2O3 based oxygen carriers exhibit a decay in the H2 yield with cycle number due to the formation of FeAl2O4 that cannot be re-oxidized. In this study, the addition of sodium (via a sodium salt) in the synthesis of Fe2O3-Al2O3 oxygen carriers was assessed as a means to counteract the cyclic deactivation of the oxygen carrier. Detailed insight into the oxygen carrier’s structure was gained by combined X-ray powder diffraction (XRD), X-ray absorption spectroscopy (XAS) at the Al, Na and Fe K-edges and scanning transmission electron microscopy/energy-dispersive X-ray spectroscopy (STEM/EDX) analyses. The addition of sodium prevented the formation of FeAl2O4 and stabilized the oxygen carrier via the formation of a layered structure, Na-β-Al2O3 phase. The resulting material, Na-β-Al2O3 stabilized Fe2O3, showed a very high H2 yield of ca. 13.3 mmol/g during 15 cycles.


2021 ◽  
Author(s):  
Nur Sena Yüzbasi ◽  
Andac Armutlulu ◽  
Thomas Huthwelker ◽  
Paula Abdala ◽  
Christoph Müller

Chemical looping is an emerging technology to produce high purity hydrogen from fossil fuels or biomass with the simultaneous capture of the CO2 produced at the distributed scale. This process requires the availability of stable Fe2O3-based oxygen carriers. Fe2O3-Al2O3 based oxygen carriers exhibit a decay in the H2 yield with cycle number due to the formation of FeAl2O4 that cannot be re-oxidized. In this study, the addition of sodium (via a sodium salt) in the synthesis of Fe2O3-Al2O3 oxygen carriers was assessed as a means to counteract the cyclic deactivation of the oxygen carrier. Detailed insight into the oxygen carrier’s structure was gained by combined X-ray powder diffraction (XRD), X-ray absorption spectroscopy (XAS) at the Al, Na and Fe K-edges and scanning transmission electron microscopy/energy-dispersive X-ray spectroscopy (STEM/EDX) analyses. The addition of sodium prevented the formation of FeAl2O4 and stabilized the oxygen carrier via the formation of a layered structure, Na-β-Al2O3 phase. The resulting material, Na-β-Al2O3 stabilized Fe2O3, showed a very high H2 yield of ca. 13.3 mmol/g during 15 cycles.


Molecules ◽  
2021 ◽  
Vol 26 (22) ◽  
pp. 7006
Author(s):  
Mohamed Gouda ◽  
Hany M. Abd El-Lateef

Novel environmentally-friendly corrosion inhibitors based on primary aminated modified cellulose (PAC) containing nano-oxide of some metals (MONPs), for instance iron oxide nanoparticles (Fe3O4NPs), copper oxide nanoparticles (CuONPs), and nickel oxide nanoparticles (NiONPs), were successfully synthesized. The as-prepared PAC/MONPs nanocomposites were categorized using Fourier transform infrared spectroscopy (FT-IR), transmission electron microscope (TEM), field-emission scanning electron microscopy (FE-SEM), energy-dispersive X-ray spectroscopy (EDX), X-ray diffraction (XRD), and selected area diffraction pattern (SAED) techniques. The data from spectroscopy indicated that successful formation of PAC/MONPs nanocomposites, as well as the TEM images, declared the synthesized PAC/Fe3O4NPs, PAC/CuONPs, and PAC/NiONPs with regular distribution with particle size diameters of 10, 23 and 43 nm, respectively. The protection performance of the as-prepared PAC and PAC/MONPs nanocomposites on the corrosion of C-steel in molar HCl was studied by the electrochemical and weight-loss approaches. The outcomes confirmed that the protection power increased with a rise in the [inhibitor]. The protection efficiency reached 88.1, 93.2, 96.1 and 98.6% with 250 ppm of PAC/CuONP, PAC/Fe3O4NPs, and PAC/NiONPs, respectively. PAC and all PAC/MONPs nanocomposites worked as mixed-kind inhibitors and their adsorption on the C-steel interface followed the isotherm Langmuir model. The findings were reinforced by FT-IR, FE-SEM and EDX analyses.


2021 ◽  
pp. 096739112110601
Author(s):  
Mojgan Zendehdel ◽  
Faezeh Hossein Nouri

Ag-Clinoptilolite/Polyethersulfone (PES/Clin/AgNPs) nanofiber was synthesized through the electrospinning method. The effect of solvent, the amount of Ag-Clinoptilolite, and PES were investigated. Parameters such as electric field, spinning distance, and concentration of the dope solution were studied in order to demonstrate their effects on the electrospinning ability and morphology of the nanofiber. The structure of PES/Clin/AgNPs nanofiber was characterized by X-ray diffraction (XRD), scanning electron microscopy (SEM), and energy-dispersive X-ray spectroscopy (EDX) analyses. In the optimum conditions, the nanofibers could be prepared at the size of 250–800 nm. Then, their ability to remove chemical oxygen demand (COD) from real wastewater was studied. The result revealed about 85% removal of COD at pH = 10 and in 10 min for PES/Clin/AgNPs (25%). A successful fabrication method using low-cost natural zeolite and the green polymer was introduced. The reusability of the column was assessed.


2021 ◽  
Vol 2110 (1) ◽  
pp. 012009
Author(s):  
F U Ermawati

Abstract MgTiO3-based dielectric ceramics have been recognized as functional materials in the microwave telecommunications industry. Research and development on MgTiO3 dielectric ceramics has therefore developed rapidly. This paper reports x-ray diffraction (XRD) and energy dispersive x-ray (EDX) analyses on the formation of MgTiO3 phase in (Mg0.6Zn0.4)(Ti0.99Sn0.01)O3 powder due to variations in calcination temperature from 550 to 700°C for 2 h. The powder was synthesized via the dissolved metal mixing course using magnesium, zinc, titanium and tin metal powders (Merck) as starting materials. The Rietveld refinement on the XRD patterns of the samples revealed that increasing the calcination temperature reduces the molar% content of MgTiO3 phase of from (97.91±1.51) at 550°C to (87.81±1.29) at 700 °C and causes a decrease in the diffraction peak intensity. The remaining % belongs to TiO2 rutile. The calcination temperature also enlarged the size of MgTiO3 unit cell volume. The EDX data on the atomic% ratio of the elements confirmed the presence of the phases. Discussion of these results is presented in detail in this paper.


2021 ◽  
Vol 2 (3) ◽  
pp. 447-460
Author(s):  
Goutham Issac Ashok Kumar ◽  
Alexander Lambert ◽  
Joshua Caperton ◽  
Muthappan Asokan ◽  
William Yi ◽  
...  

The introduction of copper as wire bonding material brings about a new challenge of aluminum bond pad bimetallic corrosion at the copper/aluminum galvanic interface. Aluminum is well known to undergo pitting corrosion under halide-contaminated environments, even in slightly acidic conditions. This paper aims to study the corrosion morphology and progression of aluminum influenced by different halide contaminations in the presence and absence of galvanic contact with copper. We used a new corrosion characterization platform of the micropattern corrosion screening to simulate the copper wire bonding on the aluminum bond pad. The corrosion screening data and subsequent SEM–EDX analyses showed a striking difference in morphology and progression between chloride-induced and fluoride-induced aluminum corrosion. The corrosion products formed play a vital role in the resulting morphology and in sustaining further aluminum corrosion.


Molecules ◽  
2021 ◽  
Vol 26 (16) ◽  
pp. 4815
Author(s):  
Zakaria Tahraoui ◽  
Habiba Nouali ◽  
Claire Marichal ◽  
Patrice Forler ◽  
Julien Klein ◽  
...  

The influence of the charge compensating cation nature (Na+, Mg2+) on the water adsorption properties of LTA-type zeolites used as filler in composite materials (zeolite/polymers) was investigated. Large scale cation exchanges were performed on zeolite powder at 80 °C for 2 h using 1 M magnesium chloride (MgCl2) aqueous solutions. XRF, ICP, and EDX analyses indicate a successful cationic exchange process without the modification of the zeolite structure as shown by XRD and solid-state NMR analyses. Composite materials (granulates and molded parts) were manufactured using to extrusion and injection processes. In the case of MgA zeolite, nitrogen adsorption–desorption experiments allowed us to measure a microporous volume, unlike NaA zeolite, which is non-porous to nitrogen probe molecule. SEM and EDX analyses highlighted the homogeneous distribution of zeolite crystals into the polymer matrix. Water adsorption capacities confirmed that the trends observed in the zeolite powder samples are preserved after dragging zeolites into composite formulations. Granulates and molded parts composite samples containing the magnesium exchanged zeolite showed an increase of their water adsorption capacity up to +27% in comparison to composite samples containing the non-exchanged zeolite. The MgA composite is more promising for water decontamination applications due to its higher water adsorption properties than the NaA composite.


2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Salim Levent Aktug ◽  
Salih Durdu ◽  
Selin Kalkan ◽  
Kultigin Cavusoglu ◽  
Metin Usta

AbstractCa-based porous and rough bioceramic surfaces were coated onto zirconium by micro-arc oxidation (MAO). Subsequently, the MAO-coated zirconium surfaces were covered with an antimicrobial chitosan layer via the dip coating method to develop an antimicrobial, bioactive, and biocompatible composite biopolymer and bioceramic layer for implant applications. Cubic ZrO2, metastable Ca0.15Zr0.85O1.85, and Ca3(PO4)2 were detected on the MAO surface by powder-XRD. The existence of chitosan on the MAO-coated Zr surfaces was verified by FTIR. The micropores and thermal cracks on the bioceramic MAO surface were sealed using a chitosan coating, where the MAO surface was porous and rough. All elements such as Zr, O, Ca, P, and C were homogenously distributed across both surfaces. Moreover, both surfaces indicated hydrophobic properties. However, the contact angle of the MAO surface was lower than that of the chitosan-based MAO surface. In vitro bioactivity on both surfaces was investigated via XRD, SEM, and EDX analyses post-immersion in simulated body fluid (SBF) for 14 days. In vitro bioactivity was significantly enhanced on the chitosan-based MAO surface with respect to the MAO surface. In vitro microbial adhesions on the chitosan-based MAO surfaces were lower than the MAO surfaces for Staphylococcus aureus and Escherichia coli.


2021 ◽  
Vol 11 (1) ◽  
Author(s):  
M. N. A. Uda ◽  
Subash C. B. Gopinath ◽  
Uda Hashim ◽  
N. H. Halim ◽  
N. A. Parmin ◽  
...  

AbstractArsenic is a major global threat to the ecosystem. Here we describe a highly accurate sensing platform using silica nanoparticles/graphene at the surface of aluminum interdigitated electrodes (Al IDE), able to detect trace amounts of arsenic(III) in rice grain samples. The morphology and electrical properties of fabricated Al IDEs were characterized and standardized using AFM, and SEM with EDX analyses. Micrometer scale Al IDEs were fabricated with silicon, aluminum, and oxygen as primary elements. Validation of the bare Al IDE with electrolyte fouling was performed at different pH levels. The sensing surface was stable with no electrolyte fouling at pH 7. Each chemical modification step was monitored with current–volt measurement. The surface chemical bonds were characterized by fourier transform infrared spectroscopy (FTIR) and revealed different peaks when interacting with arsenic (1600–1000 cm−1). Both silica nanoparticles and graphene presented a sensitive limit of detection as measured by slope calibration curves at 0.0000001 pg/ml, respectively. Further, linear regression was established using ΔI (A) = 3.86 E−09 log (Arsenic concentration) [g/ml] + 8.67 E−08 [A] for silica nanoparticles, whereas for graphene Y = 3.73 E−09 (Arsenic concentration) [g/ml] + 8.52 E−08 on the linear range of 0.0000001 pg/ml to 0.01 pg/ml. The R2 for silica (0.96) and that of graphene (0.94) was close to the maximum (1). Modification with silica nanoparticles was highly stable. The potential use of silica nanoparticles in the detection of arsenic in rice grain extract can be attributed to their size and stability.


Sign in / Sign up

Export Citation Format

Share Document