scholarly journals Isothermal section of the Ni-Mn-Sb ternary system at 773K

2019 ◽  
Vol 55 (2) ◽  
pp. 147-156 ◽  
Author(s):  
W.-Q. Ao ◽  
H.-Z. Yu ◽  
F.-L. Liu ◽  
F.-S. Liu ◽  
J.-Q. Li ◽  
...  

The isothermal section of the Ni-Mn-Sb ternary system at 773 K was measured by means of 117 alloys which were analyzed by using X-ray diffraction (XRD), scanning electron microscopy (SEM), energy dispersion spectroscopy (EDS), and electron probe microanalysis (EPMA) techniques. The existence of 7 binary compounds, namely NiMn, Mn2Sb, MnSb, NiSb2, NiSb, Ni5Sb2, Ni3Sb and 2 ternary compounds, namely Ni2MnSb and NiMnSb were confirmed for this isothermal section. The four binary compounds Ni3Sb (Cu3Ti structure, Pmmn space group), Ni5Sb2 (Ni5Sb2-type structure, C2 space group), NiSb2 (FeS2-type structure, Pnnm space group) and Mn2Sb (Cu2Sb-type structure, P4/nmm space group) in the binary systems Ni-Sb and Mn-Sb were stoichiometric compounds, the homogeneity ranges of which were negligible. However the five single phases in the Ni-Mn system and the two binary compounds MnSb and NiSb showed more or less homogeneity ranges formed by substitution of Mn and Sb for Ni atom. The Heusler compound ? (Ni2MnSb) has L21-type ordered structure with space group Fm-3m, a = 0.6017 nm. And the crystal structure for the Half-Heusler compound ? (NiMnSb) is C1b-type (F-43m) with a = 0.5961 nm. The approximate homogeneity ranges of the two ternary compounds ? and ? at 773 K were investigated.

2019 ◽  
Vol 19 (2) ◽  
pp. 139-146
Author(s):  
L. Romaka ◽  
I. Romaniv ◽  
V. Romaka ◽  
M. Konyk ◽  
A. Horyn ◽  
...  

The interaction of the components in the Ho-Cu-Sn ternary system was investigated at 670 K over the whole concentration range using X-ray diffraction and EPM analyses. Four ternary compounds were formed in the Ho–Cu–Sn system at 670 K: HoCuSn (LiGaGe type, space group P63mc), Ho3Cu4Sn4 (Gd3Cu4Ge4-type, space group Immm), HoCu5Sn (CeCu5Au-type, space group Pnma), and Ho1.9Cu9.2Sn2.8 (Dy1.9Cu9.2Sn2.8-type, space group P63/mmc). The formation of the interstitial solid solution based on HoSn2 (ZrSi2-type) binary compound up to 5 at. % Cu was found.


2019 ◽  
Vol 20 (4) ◽  
pp. 376-383
Author(s):  
M. Konyk ◽  
L. Romaka ◽  
Yu. Stadnyk ◽  
V.V. Romaka ◽  
R. Serkiz ◽  
...  

The isothermal section of the phase diagram of the Er–Cr–Ge ternary system was constructed at 1070 K over the whole concentration range using X-ray diffractometry, metallography and electron microprobe (EPM) analysis. The interaction between the elements in the Er−Cr−Ge system results in the formation of two ternary compounds: ErCr6Ge6 (MgFe6Ge6-type, space group P6/mmm, Pearson symbol hP13; a = 5.15149(3), c = 8.26250(7) Ǻ; RBragg = 0.0493, RF = 0.0574) and ErCr1-хGe2 (CeNiSi2-type, space group Cmcm, Pearson symbol oS16, a = 4.10271(5), b = 15.66525(17), c = 3.99017(4) Ǻ; RBragg = 0.0473, RF = 0.0433) at investigated temperature. For the ErCr1-xGe2 compound, the homogeneity region was determined (ErCr0.28-0.38Ge2; a = 4.10271(5)-4.1418(9), b = 15.6652(1)-15.7581(4), c = 3.99017(4)-3.9291(1) Ǻ).


1993 ◽  
Vol 48 (2) ◽  
pp. 240-242 ◽  
Author(s):  
H. Allescher-Last ◽  
H.-U. Schuster

AbstractTwo new ternary compounds YbMgSn and Eu?Mg4Sn4 have been prepared and characterized by X-ray diffraction. YbMgSn crystallizes in the Fe-,P-type structure, space group P-62m. The compound Eu3Mg4Sn4 crystallizes orthorhom bically in the space group Immm. It is isotypic to Li4Sr3Sb4. The structures were calculated from single crystal data.


2021 ◽  
Vol 22 (2) ◽  
pp. 248-254
Author(s):  
M. Konyk ◽  
L. Romaka ◽  
Yu. Stadnyk ◽  
V.V. Romaka ◽  
V. Pashkevych

The isothermal section of the phase diagram of the Gd–Cr–Ge ternary system was constructed at 1070 K over the whole concentration range using X-ray diffractometry, metallography and electron microprobe (EPM) analysis. Three ternary compounds are realized in the Gd–Cr–Ge system at the temperature of annealing: Gd117Cr52Ge112 (Tb117Fe52Ge112 structure type,  space group Fm-3m, Pearson symbol cF1124, a = 2.8971(6) nm), GdCr6Ge6 (SmMn6Sn6 structure type, space group P6/mmm, Pearson symbol hP16, a = 0.51797(2), c = 0.82901(4) nm) and GdCr1-хGe2 (CeNiSi2 structure type, space group Cmcm, Pearson symbol oS16, a = 0.41569(1)-0.41593(8), b = 1.60895(6)-1.60738(3), c = 0.40318(1)-0.40305(8) nm). For the GdCr1-xGe2 compound the homogeneity range was determined (x=0.73 – 0,69).


2020 ◽  
Vol 86 (5) ◽  
pp. 3-12
Author(s):  
Bohdana Belan ◽  
Mykola Manyako ◽  
Mariya Dzevenko ◽  
Dorota Kowalska ◽  
Roman Gladyshevskii

The new ternary silicide Lu3Ni11.74(2)Si4 was synthesized from the elements by arc-melting and its crystal structure was determined by the single-crystal X-ray diffraction. The compound crystallizes in the Sc3Ni11Ge4-type: Pearson symbol hP37.2, space group P63/mmc (No. 194), a = 8.0985(16), c = 8.550(2) Å, Z = 2; R = 0.0244, wR = 0.0430 for 244 reflections. The silicide Lu3Ni11.74(2)Si4 is new member of the EuMg5.2-type structure family.


2021 ◽  
Vol 0 (0) ◽  
Author(s):  
Myroslava Horiacha ◽  
Galyna Nychyporuk ◽  
Rainer Pöttgen ◽  
Vasyl Zaremba

Abstract Phase formation in the solid solution TbNiIn1−x Ga x at 873 K was investigated in the full concentration range by means of powder X-ray diffraction and EDX analysis. The samples were synthesized by arc-melting of the pure metals with subsequent annealing at 873 K for one month. The influence of the substitution of indium by gallium on the type of structure and solubility was studied. The solubility ranges have been determined and changes of the unit cell parameters were calculated on the basis of powder X-ray diffraction data: TbNiIn1–0.4Ga0–0.6 (ZrNiAl-type structure, space group P 6 ‾ 2 m $P‾{6}2m$ , a = 0.74461(8)–0.72711(17) and c = 0.37976(5)–0.37469(8) nm); TbNiIn0.2–0Ga0.8–1.0 (TiNiSi-type structure, space group Pnma, а = 0.68950(11)–0.68830(12), b = 0.43053(9)–0.42974(6), с = 0.74186(10)–0.73486(13) nm). The crystal structures of TbNiGa (TiNiSi type, Pnma, a = 0.69140(5), b = 0.43047(7), c = 0.73553(8) nm, wR2=0.0414, 525 F 2 values, 21 variables), TbNiIn0.83(1)Ga0.17(1) (ZrNiAl type, P 6 ‾ 2 m $P‾{6}2m$ , a = 0.74043(6), c = 0.37789(3) nm, wR2 = 0.0293, 322 F 2 values, 16 variables) and TbNiIn0.12(2)Ga0.88(2) (TiNiSi type, Pnma, a = 0.69124(6), b = 0.43134(9), c = 0.74232(11) nm, wR2 = 0.0495, 516 F 2 values, 21 variables) have been determined. The characteristics of the solid solutions and the variations of the unit cell parameters are briefly discussed.


Materials ◽  
2018 ◽  
Vol 11 (12) ◽  
pp. 2396 ◽  
Author(s):  
Jinfa Liao ◽  
Hang Wang ◽  
Tzu-Yu Chen

The phase equilibrium of the Ni–Al–La ternary system in a nickel-rich region was observed at 800 °C and 1000 °C using scanning electron microscopy backscattered electron imaging, energy dispersive X-ray spectrometry and X-ray diffractometry. The solubility of Al in the Ni5La phase was remeasured at 800 °C and 1000 °C. Herein, we report a new ternary phase, termed Ni2AlLa, confirmed at 800 °C. Its X-ray diffraction (XRD) pattern was indexed and space group determined using Total Pattern Solution (TOPAS), and the suitable lattice parameters were fitted using the Pawley method and selected-area electron diffraction. Ni2AlLa crystallizes in the trigonal system with a space group R3 (no. 146), a = 4.1985 Å and c = 13.6626 Å. A self-consistent set of thermodynamic parameters for the Al–La and Ni–La binary systems and the Ni–Al–La ternary system includes a Ni2AlLa ternary phase, which was optimized using the CALPHAD method. The calculated thermodynamic and phase-equilibria data for the binary and ternary systems are consistent with the literature and measured data.


2011 ◽  
Vol 391-392 ◽  
pp. 1210-1214
Author(s):  
Hao Tu ◽  
Xin Ming Wang ◽  
Ya Liu ◽  
Chang Jun Wu ◽  
Jian Hua Wang ◽  
...  

The isothermal section of the Fe-Zn-Nb ternary system at 600 oC was determined using the equilibrated alloys with the aid of diffusion couple approach. The specimens were investigated by means of SEM-EDS analysis, SEM-WDS analysis and X-ray diffraction. A true ternary phase T was identified, this phase is in equilibrium with ε, NbZn3, Γ, δ, and η - Zn phases respectively in the system. The solubility of Nb in η - Zn and δ phase is limited and that of Zn in ε is up to 10.0%.


1988 ◽  
Vol 32 ◽  
pp. 497-505
Author(s):  
M. A. Rodriguez ◽  
J. J. Simmins ◽  
P. H. McCluskey ◽  
R. S. Zhou ◽  
R. L. Snyder

The discovery of the superconducting material Y1Ba2Cu3O6+δ( “123” material) resulted in a world wide interest in the pseudo-ternary system BaO·YO·CuO. A complete study of the phases present in this system was initiated to develop a better understanding and processing of the superconducting 123 material. The crystal structures were established for two of the three ternary compounds in this system immediately after the discovery of superconductivity. One such phase was a green insulating compound Y2Ba1Cu1O5(”211”) which has the space group. The superconducting 123 compound was found to have the space group Pmmm and an ordered triple-celled perovskite structure.


1987 ◽  
Vol 20 (4) ◽  
pp. 323-323
Author(s):  
C. A. Majid ◽  
M. A. Hussain

Structural studies of polycrystalline CuAsSe2, Cu3AsSe4 and Cu3AsSe3 are reported. These were found to be cubic with space group Pm{\bar 3}m and lattice parameters as follows: (1) CuAsSe2: a = 5.513(4) Å, V = 167.47(1) Å3, Z = 2; Dm = 5.56(6), Dx = 5.88 g cm−3. (2) Cu3AsSe4: a = 5.530(5) Å; V = 169.11(2) Å3; Z = 1; Dm = 5.51(5), Dx = 5.75 g cm−3. (3) Cu3AsSe3: a = 5.758(9) Å, V = 190.87(3) Å3, Z = 1, Dm = 5.03(9), Dx = 4.45 g cm−3. X-ray diffraction data using a Rigaku DMAX-IIIA diffractometer and Cu Kα radiation.


Sign in / Sign up

Export Citation Format

Share Document