scholarly journals Study of the structural, electrokinetic and magnetic characteristics of the Er1-xZrxNiSb semiconductor

2020 ◽  
Vol 21 (4) ◽  
pp. 689-694
Author(s):  
V.A. Romaka ◽  
Yu. Stadnyk ◽  
L. Romaka ◽  
V. Krayovskyy ◽  
A. Нoryn ◽  
...  

Peculiarities of the structural, electrokinetic, energetic, and magnetic characteristics of Er1-xZrxNiSb semiconductive solid solution, х=0–0.10, were studied. It was suggested that when Zr (4d25s2) atoms were introduced into the structure of the ErNiSb half-Heusler phase by substitution of Er (5d06s2) atoms in 4a position, Zr atoms can also simultaneously occupy the 4c position of Ni (3d84s2) atoms. As a result, in Er1-xZrxNiSb semiconductor, the structural defects of donor nature in position 4a and ones of acceptor nature in position 4c were generated simultaneously. In this case, in the band gap of Er1-xZrxNiSb, the energy states of impurity donor  and acceptor  bands (donor-acceptor pairs) appear and determine the electrical conductivity mechanism of the semiconductor.

2019 ◽  
Vol 20 (2) ◽  
pp. 127-132
Author(s):  
Yu.V. Stadnyk ◽  
V.V. Romaka ◽  
V.A. Romaka ◽  
A.M. Нoryn ◽  
L.P. Romaka ◽  
...  

The peculiarities of electronic and crystal structures of Zr1-xVxNiSn (x = 0 - 0.10) semiconductive solid solution were investigated. To predict Fermi level εF behavior, band gap εg and electrokinetic characteristics of Zr1-xVxNiSn, the distribution of density of electronic states (DOS) was calculated. The mechanism of simultaneous generation of structural defects of donor and acceptor nature was determined based on the results of calculations of electronic structure and measurement of electrical properties of Zr1-xVxNiSn semiconductive solid solution. It was established that in the band gap of Zr1-xVxNiSn the energy states of the impurity donor εD2 and acceptor εA1 levels (donor-acceptor pairs) appear, which determine the mechanisms of conduction of semiconductor.


2018 ◽  
Vol 19 (1) ◽  
pp. 21-28
Author(s):  
L.P. Romaka ◽  
Yu.V. Stadnyk ◽  
V.A. Romaka ◽  
A.M. Horyn ◽  
V.Ya. Krayovskyy

The features of electrokinetic, energy state and magnetic characteristics of ZrNi1-xRhxSn semiconductive solid solution were investigated in the ranges: T = 80-400 K, x = 0-0.10. It was shown that substitution of Ni atoms (3d84s2) by Rh atoms (4d85s1) in the structure of ZrNiSn compound generated the structural defects with acceptor nature, and holes became the main charge carriers in the ZrNi1-xRhxSn at low temperature. Based on analysis of the motion rate of the Fermi level ΔεF/Δх in ZrNi1-xRhxSn to the valence band and change of sign of thermopower coefficient from positive to negative it was suggested that the structural defects of acceptor and donor natures were generated simultaneously (donor-acceptor pairs), and deep donor band ɛD2 was formed.


2019 ◽  
Vol 20 (3) ◽  
pp. 275-281
Author(s):  
L. Romaka ◽  
Yu. Stadnyk ◽  
V.A. Romaka ◽  
A. Нoryn ◽  
I. Romaniv ◽  
...  

The samples of ZrNi1-хVxSn solid solution (x = 0 – 0.10) based on the ZrNiSn half-Heusler phase (MgAgAs structure type) were synthesized by direct arc-melting with homogenous annealing at 1073 K. The electrokinetic and energy state characteristics of the ZrNi1-хVxSn semiconducting solid solution were investigated in the temperature range T = 80 - 400 K. An analysis of behavior of the electrokinetic and energetic characteristics, in particular, the motion rate of the Fermi level, ΔεF/Δx for ZrNi1-хVxSn, allows to assume about the simultaneous generation of the structural defects of donor and acceptor nature in the crystal. The additional researches are required to establish the mechanisms of donor generation.


2019 ◽  
Vol 19 (2) ◽  
pp. 151-158
Author(s):  
L.P. Romaka ◽  
Yu.V. Stadnyk ◽  
V.V. Romaka ◽  
P.-F. Rogl ◽  
V.A. Romaka ◽  
...  

The peculiarities of crystal and electronic structures, thermodynamic and energy state characteristics of the ZrNi1-xRhxSn semiconductive solid solution were investigated. It has been shown that in the ZrNiSn compound simultaneously exist two types of structural defects of the donor nature which generate two donor bands with different ionization energy in the band gap: a) the donor band ɛD1, formed as a result of a partial, up to ~ 1%, occupation of 4a position of Zr atoms by Ni atoms (mechanism of “a priori doping”) and deep donor band ɛD2, formed as a result of partial occupation of the tetrahedral voids by Ni atoms (Vac). The substitution in 4c position of the Ni atoms by Rh ones in ZrNi1-xRhxSn generates structural defects of acceptor nature and creates an impurity acceptor band ɛA in the band gap, which, in addition to the existence of ɛD1 та ɛD2 donor bands, makes semiconductor highly doped and strongly compensated. The obtained results allow to understand the mechanisms of electrical conductivity of thermoelectric materials based on n-ZrNiSn and the ways of conscious optimization of their characteristics for obtaining the maximum efficiency of conversion of thermal energy into electric.


2019 ◽  
Vol 20 (1) ◽  
pp. 33-39
Author(s):  
V. Romaka ◽  
L. Romaka ◽  
Y. Stadnyk ◽  
A. Horyn ◽  
V. Krayovskyy ◽  
...  

Structural, electrokinetic and energy state characteristics of the Zr1-xVxNiSn semiconductive solid solution (х=0–0.10) were investigated in the temperature interval 80–400 К. It was shown that doping of the ZrNiSn compound by V atoms (rV=0.134 nm) due to substitution of Zr (rZr=0.160 nm) results in increase of lattice parameter а(х) of Zr1-xVxNiSn indicating unforecast structural change. Based on analysis of the motion rate of the Fermi level ΔεF/Δх for Zr1-xVxNiSn in direction of the conduction band it was concluded about simultaneous generation of the structural defects of the donor and acceptor nature (donor-acceptor pairs) by unknown mechanism and creation of the corresponding energy levels in the band gap of the semiconductor.


2016 ◽  
Vol 3 (5) ◽  
pp. 545-555 ◽  
Author(s):  
Agnieszka Nowak-Król ◽  
Reinhard Wagener ◽  
Felix Kraus ◽  
Amaresh Mishra ◽  
Peter Bäuerle ◽  
...  

By variation of donor and acceptor building blocks in acceptor–donor–acceptor dyes a transition from p- to n-type semiconductor has been achieved.


2017 ◽  
Vol 18 (1) ◽  
pp. 41-48
Author(s):  
L.P. Romaka ◽  
A.M. Нoryn ◽  
Yu.V. Stadnyk ◽  
V.Ya. Krayovskyy ◽  
V.A. Romaka ◽  
...  

Features of structural, electrokinetic, and energy state characteristics of ZrNiSn1-xGax semiconductive solid solution were investigated in the temperature ranges Т = 80 - 400 K and х = 0 - 0.15. Disorder of crystal structure for n-ZrNiSn compound as a result of occupation of Zr (4d25s2) atoms in 4a sites by Ni (3d84s2) ones up to ~ 1 % was confirmed. It generated donor levels band ɛD1 in the band gap. It was shown that introduction of Ga (4s24p1) atoms by means of substitution of Sn (5s25p2) ones ordered crystal structure. In this case acceptor defects were generated in 4b sites and it created extended acceptor impurity band ɛА. It was suggested that with generation of acceptor structural defects the vacancies in the Sn (4b) atomic sites simultaneously generated donor defects and formed deep donor band ɛD2 (donor-acceptor pair took place).


2021 ◽  
Vol 82 (1) ◽  
pp. 19-25
Author(s):  
Volodymyr Krayovskyy ◽  
◽  
Volodymyr Pashkevych ◽  
Mariya Rokomanyuk ◽  
Petro Haranuk ◽  
...  

The results of a complex study of the semiconductor thermometric material TiСo1-xMnxSb, х=0.01–0.10, for the producing of sensitive elements of thermoelectric and electro resistive sensors are presented. Microprobe analysis of the concentration of atoms on the surface of TiСo1-xMnxSb samples established their correspondence to the initial compositions of the charge, and X-ray phase analysis showed the absence of traces of extraneous phases on their diffractograms. The produced structural studies of the thermometric material TiСo1-xMnxSb allow to speak about the ordering of its crystal structure, and the substitution of Co atoms on Mn at the 4c position generate structural defects of acceptor nature. The obtained results testify to the homogeneity of the samples and their suitability for the study of electrokinetic performances and the manufacture of sensitive elements of thermocouples. Modeling of structural, electrokinetic and energetic performances of TiСo1-xMnxSb, х=0.01–0.10, for different variants of spatial arrangement of atoms is performed. To model energetic and kinetic performances, particularly the behavior of the Fermi level, the band gap, the density of states (DOS) distribution was calculated for an ordered variant of the structure in which Co atoms at position 4c are replaced by Mn atoms. Substitution of Co atoms (3d74s2) by Mn (3d54s2) generates structural defects of acceptor nature in the TiСo1-xMnxSb semiconductor (the Mn atom contains fewer 3d- electrons than Co). This, at the lowest concentrations of impurity atoms Mn, leads to the movement of the Fermi level from the conduction band to the depth of the band gap. In a semiconductor with the composition TiCo0.99Mn0.01Sb, the Fermi level is located in the middle of the band gap, indicating its maximum compensation when the concentrations of ionized acceptors and donors are close. At higher concentrations of impurity Mn atoms, the number of generated acceptors will exceed the concentration of donors, and the concentration of free holes will exceed the concentration of electrons. Under these conditions, the Fermi level approach, and then the level of the valence band TiСo1-xMnxSb cross: the dielectric-metal conductivity transition take place. The presence of a high-temperature activation region on the temperature dependence of the resistivity ln(ρ(1/T)) TiСo1‑xMnxSb at the lowest concentration of impurity atoms Mn, х=001, indicates the location of the Fermi level in the band gap of the semiconductor thermopower coefficient α(Т,х) at these temperatures specify its position - at a distance of ~ 6 meV from the level of the conduction band . In this case, electrons are the main carriers of current. The absence of a low-temperature activation region on this dependence indicates the absence of the jumping mechanism conductivity. Negative values of the thermopower coefficient α(Т,х) TiСo0,99Mn0,01Sb at all temperatures, when according to DOS calculations the concentrations of acceptors and donors are close, and the semiconductor is maximally compensated, can be explained by the higher concentration of uncontrolled donors. However, even at higher concentrations of impurity Mn atoms in TiСo0,98Mn0,02Sb, the sign of the thermopower coefficient α(Т,х) remains negative, but the value of resistivity ρ(х,Т) increases rapidly, and the Fermi level deepens into the forbidden zone at a distance of ~ 30 meV. The rapid increase in the values of the resistivity ρ(х,Т) in the region of concentrations х=0.01–0.02 shows that acceptors are generated in the TiСo1-xMnxSb semiconductor when Co atoms are replaced by Mn, which capture free electrons, reducing their concentration. However, negative values of the thermopower coefficient α(Т,х) are evidence that either the semiconductor has a significant concentration of donors, which is greater than the number of introduced acceptors (х=0.02), or the crystal simultaneously generates defects of acceptor and donor nature. The obtained result does not agree with the calculations of the electronic structure of the TiСo1-xMnxSb semiconductor. It is concluded that more complex structural changes occur in the semiconductor than the linear substitution of Co atoms by Mn, which simultaneously generate structural defects of acceptor and donor nature by different mechanisms, but the concentration of donors exceeds the concentration of generated acceptors. Based on a comprehensive study of the electronic structure, kinetic and energetic performances of the thermosensitive material TiСo1-xMnxSb, it is shown that the introduction of impurity Mn atoms into TiCoSb can simultaneously generate in the semiconductor an acceptor zone (substitution of Co atoms for Mn) and donor zones and of different nature. The ratio of the concentrations of ionized acceptors and donors generated in TiСo1-xMnxSb will determine the position of the Fermi level and the mechanisms of electrical conductivity. However, this issue requires additional research, in particular structural and modeling of the electronic structure of a semiconductor solid solution under different conditions of entry into the structure of impurity Mn atoms. The investigated solid solution TiСo1-xMnxSb is a promising thermometric material.


2020 ◽  
Vol 21 (1) ◽  
pp. 73-81
Author(s):  
Yu. Stadnyk ◽  
V. Romaka ◽  
A. Нoryn ◽  
L. Romaka ◽  
V. Krayovskyy ◽  
...  

The effect of doping of the TiCoSb compound (MgAgAs structure type) by Mo atoms on the features of the structural characteristics and behavior of the electrokinetic, energetic and magnetic properties of the Ti1-xMoxCoSb semiconducting solid solution (х = 0 - 0.06) in the temperature interval 80 - 400 K was studied. It was shown that including of Mo atoms (rМо= 0.140 nm) in the ToCoSb structure by substitution of Ti atoms (rТі= 0.146 нм) in 4a position is accompanied with non-monotonous variation of the lattice parameter values а(х), indicating unpredictable structural changes. Based on analysis of the variation of the electric resistivity values, thermopower coefficient, magnetic susceptibility and energetic characteristics, it was concluded that simultaneous generation in the crystal of the structural defects of the donor and acceptor nature (donor-acceptor pairs), which generate corresponding energy levels in the band gap of semiconductor and determine its electrical conductivity.


2002 ◽  
Vol 730 ◽  
Author(s):  
C. Xue ◽  
D. Papadimitriou ◽  
Y.S. Raptis ◽  
T. Riedle ◽  
N. Esser ◽  
...  

AbstractCuxGaySe2MOCVD and PVD grown films were structurally and optically characterized by Raman, Micro-Raman and photoluminescence spectroscopy. Defect related photoluminescence excitation with wavelengths varying across the material band gap reveals: a) in Cu-rich CuGaSe2films, three band edge splitting due to the spin-orbit interaction and the crystal field, and donor-acceptor pair recombination between a shallow donor and two different acceptor levels, and b) in Ga-rich CuGaSe2films, donor-acceptor pair transitions between quasi-continua of donor and acceptor levels related to potential fluctuations. Raman spectra of CuxGaySe2films, excited by laser light near and below the material band gap, show intense modes at 197cm-1, 187cm-1, and 277cm-1, which can be used as indicators of crystallinity and Ga-content of the films. Polarization- and angular- dependent micro-Raman spectra of MOCVD CuGaSe2indicate that CuxSey-crystallites, dispersed on the surface of Cu-rich films, are grown oriented with their c-axis perpendicular to the film surface.


Sign in / Sign up

Export Citation Format

Share Document