scholarly journals Different Strategies to Persist: The pogo-Like Lemi1 Transposon Produces Miniature Inverted-Repeat Transposable Elements or Typical Defective Elements in Different Plant Genomes

Genetics ◽  
2008 ◽  
Vol 180 (1) ◽  
pp. 83-92 ◽  
Author(s):  
Hélène Guermonprez ◽  
Céline Loot ◽  
Josep M. Casacuberta
2018 ◽  
Vol 115 (28) ◽  
pp. E6650-E6658 ◽  
Author(s):  
Alexander M. Boutanaev ◽  
Anne E. Osbourn

Plants produce a plethora of natural products, including many drugs. It has recently emerged that the genes encoding different natural product pathways may be organized as biosynthetic gene clusters in plant genomes, with >30 examples reported so far. Despite superficial similarities with microbes, these clusters have not arisen by horizontal gene transfer, but rather by gene duplication, neofunctionalization, and relocation via unknown mechanisms. Previously we reported that two Arabidopsis thaliana biosynthetic gene clusters are located in regions of the genome that are significantly enriched in transposable elements (TEs). Other plant biosynthetic gene clusters also harbor abundant TEs. TEs can mediate genomic rearrangement by providing homologous sequences that enable illegitimate recombination and gene relocation. Thus, TE-mediated recombination may contribute to plant biosynthetic gene cluster formation. TEs may also facilitate establishment of regulons. However, a systematic analysis of the TEs associated with plant biosynthetic gene clusters has not been carried out. Here we investigate the TEs associated with clustered terpene biosynthetic genes in multiple plant genomes and find evidence to suggest a role for miniature inverted-repeat transposable elements in cluster formation in eudicots. Through investigation of the newly sequenced Amborella trichopoda, Aquilegia coerulea, and Kalanchoe fedtschenkoi genomes, we further show that the “block” mechanism of founding of biosynthetic gene clusters through duplication and diversification of pairs of terpene synthase and cytochrome P450 genes that is prevalent in the eudicots arose around 90–130 million years ago, after the appearance of the basal eudicots and before the emergence of the superrosid clade.


Genes ◽  
2021 ◽  
Vol 12 (6) ◽  
pp. 859
Author(s):  
Alicja Macko-Podgórni ◽  
Gabriela Machaj ◽  
Dariusz Grzebelus

Miniature inverted-repeat transposable elements (MITEs) are the most abundant group of Class II mobile elements in plant genomes. Their presence in genic regions may alter gene structure and expression, providing a new source of functional diversity. Owing to their small size and lack of coding capacity, the identification of MITEs has been demanding. However, the increasing availability of reference genomes and bioinformatic tools provides better means for the genome-wide identification and analysis of MITEs and for the elucidation of their contribution to the evolution of plant genomes. We mined MITEs in the carrot reference genome DH1 using MITE-hunter and developed a curated carrot MITE repository comprising 428 families. Of the 31,025 MITE copies spanning 10.34 Mbp of the carrot genome, 54% were positioned in genic regions. Stowaways and Tourists were frequently present in the vicinity of genes, while Mutator-like MITEs were relatively more enriched in introns. hAT-like MITEs were relatively more frequently associated with transcribed regions, including untranslated regions (UTRs). Some carrot MITE families were shared with other Apiaceae species. We showed that hAT-like MITEs were involved in the formation of new splice variants of insertion-harboring genes. Thus, carrot MITEs contributed to the accretion of new diversity by altering transcripts and possibly affecting the regulation of many genes.


PeerJ ◽  
2019 ◽  
Vol 7 ◽  
pp. e6080
Author(s):  
Clicia Grativol ◽  
Flavia Thiebaut ◽  
Sara Sangi ◽  
Patricia Montessoro ◽  
Walaci da Silva Santos ◽  
...  

Miniature inverted-repeat transposable elements (MITEs) have been associated with genic regions in plant genomes and may play important roles in the regulation of nearby genes via recruitment of small RNAs (sRNA) to the MITEs loci. We identified eight families of MITEs in the sugarcane genome assembly with MITE-Hunter pipeline. These sequences were found to be upstream, downstream or inserted into 67 genic regions in the genome. The position of the most abundant MITE (Stowaway-like) in genic regions, which we call AddIn-MITE, was confirmed in a WD40 gene. The analysis of four monocot species showed conservation of the AddIn-MITE sequence, with a large number of copies in their genomes. We also investigated the conservation of the AddIn-MITE’ position in the WD40 genes from sorghum, maize and, in sugarcane cultivars and wild Saccharum species. In all analyzed plants, AddIn-MITE has located in WD40 intronic region. Furthermore, the role of AddIn-MITE-related sRNA in WD40 genic region was investigated. We found sRNAs preferentially mapped to the AddIn-MITE than to other regions in the WD40 gene in sugarcane. In addition, the analysis of the small RNA distribution patterns in the WD40 gene and the structure of AddIn-MITE, suggests that the MITE region is a proto-miRNA locus in sugarcane. Together, these data provide insights into the AddIn-MITE role in Andropogoneae grasses.


2018 ◽  
Vol 19 (1) ◽  
Author(s):  
Juan Manuel Crescente ◽  
Diego Zavallo ◽  
Marcelo Helguera ◽  
Leonardo Sebastián Vanzetti

2012 ◽  
Vol 124 (7) ◽  
pp. 1365-1373 ◽  
Author(s):  
Beery Yaakov ◽  
Elif Ceylan ◽  
Katherine Domb ◽  
Khalil Kashkush

Genetics ◽  
1998 ◽  
Vol 148 (1) ◽  
pp. 435-443
Author(s):  
Mingsheng Chen ◽  
Phillip SanMiguel ◽  
Jeffrey L Bennetzen

Abstract Previously, we have demonstrated microcolinearity of gene composition and orientation in sh2/a1-homologous regions of the rice, sorghum, and maize genomes. However, the sh2 and a1 homologues are only about 20 kb apart in both rice and sorghum, while they are separated by about 140 kb in maize. In order to further define sequence organization and conservation in sh2/a1-homologous regions, we have completely sequenced a 42,446-bp segment of sorghum DNA. Four genes were identified: a homologue of sh2, two homologues of a1, and a putative transcriptional regulatory gene. A solo long terminal repeat of the retroelement Leviathan was detected between the two a1 homologues, and eight miniature inverted repeat transposable elements were found in this region. Comparison of the sorghum sequence with the sequence of the homologous segment from rice indicated that only the identified genes were evolutionarily conserved between these two species, which have evolved independently for over 50 million years. The introns of the a1 homologues have evolved faster than the introns of the sh2 homologue. The a1 tandem duplication appears to be an ancient event that may have preceded the ancestral divergence of maize, sorghum, and rice.


Sign in / Sign up

Export Citation Format

Share Document