scholarly journals A miniature inverted-repeat transposable element, AddIn-MITE, located inside a WD40 gene is conserved in Andropogoneae grasses

PeerJ ◽  
2019 ◽  
Vol 7 ◽  
pp. e6080
Author(s):  
Clicia Grativol ◽  
Flavia Thiebaut ◽  
Sara Sangi ◽  
Patricia Montessoro ◽  
Walaci da Silva Santos ◽  
...  

Miniature inverted-repeat transposable elements (MITEs) have been associated with genic regions in plant genomes and may play important roles in the regulation of nearby genes via recruitment of small RNAs (sRNA) to the MITEs loci. We identified eight families of MITEs in the sugarcane genome assembly with MITE-Hunter pipeline. These sequences were found to be upstream, downstream or inserted into 67 genic regions in the genome. The position of the most abundant MITE (Stowaway-like) in genic regions, which we call AddIn-MITE, was confirmed in a WD40 gene. The analysis of four monocot species showed conservation of the AddIn-MITE sequence, with a large number of copies in their genomes. We also investigated the conservation of the AddIn-MITE’ position in the WD40 genes from sorghum, maize and, in sugarcane cultivars and wild Saccharum species. In all analyzed plants, AddIn-MITE has located in WD40 intronic region. Furthermore, the role of AddIn-MITE-related sRNA in WD40 genic region was investigated. We found sRNAs preferentially mapped to the AddIn-MITE than to other regions in the WD40 gene in sugarcane. In addition, the analysis of the small RNA distribution patterns in the WD40 gene and the structure of AddIn-MITE, suggests that the MITE region is a proto-miRNA locus in sugarcane. Together, these data provide insights into the AddIn-MITE role in Andropogoneae grasses.

2018 ◽  
Vol 115 (28) ◽  
pp. E6650-E6658 ◽  
Author(s):  
Alexander M. Boutanaev ◽  
Anne E. Osbourn

Plants produce a plethora of natural products, including many drugs. It has recently emerged that the genes encoding different natural product pathways may be organized as biosynthetic gene clusters in plant genomes, with >30 examples reported so far. Despite superficial similarities with microbes, these clusters have not arisen by horizontal gene transfer, but rather by gene duplication, neofunctionalization, and relocation via unknown mechanisms. Previously we reported that two Arabidopsis thaliana biosynthetic gene clusters are located in regions of the genome that are significantly enriched in transposable elements (TEs). Other plant biosynthetic gene clusters also harbor abundant TEs. TEs can mediate genomic rearrangement by providing homologous sequences that enable illegitimate recombination and gene relocation. Thus, TE-mediated recombination may contribute to plant biosynthetic gene cluster formation. TEs may also facilitate establishment of regulons. However, a systematic analysis of the TEs associated with plant biosynthetic gene clusters has not been carried out. Here we investigate the TEs associated with clustered terpene biosynthetic genes in multiple plant genomes and find evidence to suggest a role for miniature inverted-repeat transposable elements in cluster formation in eudicots. Through investigation of the newly sequenced Amborella trichopoda, Aquilegia coerulea, and Kalanchoe fedtschenkoi genomes, we further show that the “block” mechanism of founding of biosynthetic gene clusters through duplication and diversification of pairs of terpene synthase and cytochrome P450 genes that is prevalent in the eudicots arose around 90–130 million years ago, after the appearance of the basal eudicots and before the emergence of the superrosid clade.


2020 ◽  
Author(s):  
Rajani Kanth Gudipati ◽  
Kathrin Braun ◽  
Foivos Gypas ◽  
Daniel Hess ◽  
Jan Schreier ◽  
...  

SummarySmall RNA pathways defend the germlines of animals against selfish genetic elements and help to maintain genomic integrity. At the same time, their activity needs to be well-controlled to prevent silencing of ‘self’ genes. Here, we reveal a proteolytic mechanism that controls endogenous small interfering (22G) RNA activity in the Caenorhabditis elegans germline to protect genome integrity and maintain fertility. We find that WAGO-1 and WAGO-3 Argonaute (Ago) proteins are matured through proteolytic processing of their unusually proline-rich N-termini. In the absence of DPF-3, a P-granule-localized N-terminal dipeptidase orthologous to mammalian DPP8/9, processing fails, causing a change of identity of 22G RNAs bound to these WAGO proteins. Desilencing of repeat- and transposon-derived transcripts, DNA damage and acute sterility ensue. These phenotypes are recapitulated when WAGO-1 and WAGO-3 are rendered resistant to DFP-3-mediated processing, identifying them as critical substrates of DPF-3. We conclude that N-terminal processing of Ago proteins regulates their activity and promotes discrimination of self from non-self by ensuring association with the proper complement of small RNAs.Graphical Abstract: The role of DPF-3 in the fertility of the animalsIn wild type animals, the WAGO-1 and WAGO-3 Argonaute proteins are produced as immature pro-proteins with N-termini (N) that are unusually rich in prolines (P). N-terminal processing by DPF-3 is required for loading of the proper small RNA cargo and stabilization of WAGO-3. Accordingly, loss of this processing activity causes desilencing of transposable elements (TE), cell death and sterility.


2019 ◽  
Vol 116 (29) ◽  
pp. 14639-14644 ◽  
Author(s):  
Masatoshi Mutazono ◽  
Tomoko Noto ◽  
Kazufumi Mochizuki

The silencing of repetitive transposable elements (TEs) is ensured by signal amplification of the initial small RNA trigger, which occurs at distinct steps of TE silencing in different eukaryotes. How such a variety of secondary small RNA biogenesis mechanisms has evolved has not been thoroughly elucidated. Ciliated protozoa perform small RNA-directed programmed DNA elimination of thousands of TE-related internal eliminated sequences (IESs) in the newly developed somatic nucleus. In the ciliate Paramecium, secondary small RNAs are produced after the excision of IESs. In this study, we show that in another ciliate, Tetrahymena, secondary small RNAs accumulate at least a few hours before their derived IESs are excised. We also demonstrate that DNA excision is dispensable for their biogenesis in this ciliate. Therefore, unlike in Paramecium, small RNA amplification occurs before IES excision in Tetrahymena. This study reveals the remarkable diversity of secondary small RNA biogenesis mechanisms, even among ciliates with similar DNA elimination processes, and thus raises the possibility that the evolution of TE-targeting small RNA amplification can be traced by investigating the DNA elimination mechanisms of ciliates.


BMC Genomics ◽  
2020 ◽  
Vol 21 (1) ◽  
Author(s):  
Zhonghong Cao ◽  
David Rosenkranz ◽  
Suge Wu ◽  
Hongjin Liu ◽  
Qiuxiang Pang ◽  
...  

Abstract Background Planarians reliably regenerate all body parts after injury, including a fully functional head and central nervous system. But until now, the expression dynamics and functional role of miRNAs and other small RNAs during the process of head regeneration are not well understood. Furthermore, little is known about the evolutionary conservation of the relevant small RNAs pathways, rendering it difficult to assess whether insights from planarians will apply to other taxa. Results In this study, we applied high throughput sequencing to identify miRNAs, tRNA fragments and piRNAs that are dynamically expressed during head regeneration in Dugesia japonica. We further show that knockdown of selected small RNAs, including three novel Dugesia-specific miRNAs, during head regeneration induces severe defects including abnormally small-sized eyes, cyclopia and complete absence of eyes. Conclusions Our findings suggest that a complex pool of small RNAs takes part in the process of head regeneration in Dugesia japonica and provide novel insights into global small RNA expression profiles and expression changes in response to head amputation. Our study reveals the evolutionary conserved role of miR-124 and brings further promising candidate small RNAs into play that might unveil new avenues for inducing restorative programs in non-regenerative organisms via small RNA mimics based therapies.


Genes ◽  
2021 ◽  
Vol 12 (6) ◽  
pp. 859
Author(s):  
Alicja Macko-Podgórni ◽  
Gabriela Machaj ◽  
Dariusz Grzebelus

Miniature inverted-repeat transposable elements (MITEs) are the most abundant group of Class II mobile elements in plant genomes. Their presence in genic regions may alter gene structure and expression, providing a new source of functional diversity. Owing to their small size and lack of coding capacity, the identification of MITEs has been demanding. However, the increasing availability of reference genomes and bioinformatic tools provides better means for the genome-wide identification and analysis of MITEs and for the elucidation of their contribution to the evolution of plant genomes. We mined MITEs in the carrot reference genome DH1 using MITE-hunter and developed a curated carrot MITE repository comprising 428 families. Of the 31,025 MITE copies spanning 10.34 Mbp of the carrot genome, 54% were positioned in genic regions. Stowaways and Tourists were frequently present in the vicinity of genes, while Mutator-like MITEs were relatively more enriched in introns. hAT-like MITEs were relatively more frequently associated with transcribed regions, including untranslated regions (UTRs). Some carrot MITE families were shared with other Apiaceae species. We showed that hAT-like MITEs were involved in the formation of new splice variants of insertion-harboring genes. Thus, carrot MITEs contributed to the accretion of new diversity by altering transcripts and possibly affecting the regulation of many genes.


2021 ◽  
Author(s):  
Zhonglong Guo ◽  
Zheng Kuang ◽  
Yihan Tao ◽  
Haotian Wang ◽  
Miaomiao Wan ◽  
...  

MicroRNAs (miRNAs) are rapidly evolving endogenous small RNAs programing organism function and behavior. Although models for miRNA origination have been proposed based on sporadic cases, the genomic mechanisms driving swift diversification of the miRNA repertoires in plants remain elusive. Here, by comprehensively analyzing 20 phylogenetically representative plant species, we identified miniature inverted-repeat transposable elements (MITEs) as the predominant genomic sources for de novo miRNAs in angiosperms. Our data illustrated a transposition-transcription process whereby properly sized MITEs transposed into active genic regions could be converted into new miRNAs, termed MITE-miRNAs, in as few as 20 generations. We showed that this molecular domestication mechanism leads to a possible evolutionary arms race between the MITEs and the host genomes that rapidly and continuously changes the miRNA repertoires. We found that the MITE-miRNAs are selected for targeting genes associated with plant adaptation and habitat expansion, thereby constituting a genomic innovation potentially underlying angiosperm megadiversity.


Blood ◽  
2017 ◽  
Vol 130 (Suppl_1) ◽  
pp. 93-93
Author(s):  
Youmna Kfoury ◽  
Anthony Anselmo ◽  
Jefferson Seidl ◽  
Ani Papazian ◽  
Francois Mercier ◽  
...  

Abstract Background The bone marrow microenvironment (BMEV) regulates the highly regenerative hematopoietic system. However, there are a limited number of BMEV-derived molecules with a definitive role in maintaining hematopoietic stem and progenitor cells (HSPCs). Extracellular vesicles (EVs) encapsulate bioactive molecules, and may modify the physiology of their target cells. In hematopoiesis, EVs derived from culture-expanded mesenchymal cells can rescue irradiation damage, expand human umbilical cord blood cells and support HSPCs in vitro . However, in vivo evidence of EV function is lacking. We therefore sought to investigate the role of EVs in the interaction between the BMEV and the hematopoietic system and took advantage of existing mice bearing genetic reporters of key mesenchymal cell types. Results While analyzing the bone marrow (BM) of different mesenchymal cell-GFP reporter mice, we unexpectedly found CD45+ GFP+ cells. These were confirmed as single cells with intracellular GFP as demonstrated by imaging flow cytometry and confocal microscopy (Fig. 1A). Moreover, their hematopoietic identity was confirmed by their ability to form myeloid colonies in methylcellulose. Transplanted CD45.1 BM into Osteocalcin-Topaz (Ocn-Topaz) and Collagen1-GFP (Col1-GFP) mice that label osteoblasts, as well as Nestin-GFP (Nes-GFP) that labels mesenchymal stem cells demonstrated that donor cells are comparably labeled with GFP in Ocn-Topaz and Col1-GFP (2.2%) but at a much lower frequency (0.05%) in Nes-GFP. We therefore decided to proceed with the Ocn-Topaz model to investigate the role of osteoblast derived EVs in hematopoietic communication. Within the lineage negative compartment, the frequency of GFP+ cells increased with maturation. The highest frequency found in GMPs (0.06% of live cells were GFP+), followed by CMPs (0.01%), MEPs (0.002%) and LKS (0.004%) (Fig. 1B). Of particular interest, Lin- GFP+ cells formed ~5 fold more colonies as compared to their GFP- counterparts. However, transplantation assays demonstrated that the GFP+ cells possessed a decreased ability for long term reconstitution. Given the molecular weight of GFP, we hypothesized that EVs were the basis for transfer. Transmission electron microscopy coupled with immunogold staining revealed microvesicular structures of ~100 nm in size that contained GFP and that were labeled with the exosome marker TSG101 (Fig. 1C). Western blotting and flow cytometry detected labeling with exosome markers CD81 and CD9. Heparin sulfate proteoglycans (HSPGs) have been implicated in the biogenesis and uptake of EVs. Osteoblast-specific disruption of HSPGs by the knock out of the glycosyl transferase EXT1 resulted in a (40%) drop in the frequency of GFP+ cells in the GMP compartment. These findings demonstrate the EV-dependent transfer of GFP from osteoblasts to BM hematopoietic cells, and confirm GFP as a marker for the isolation and characterization of EV target cells. Exosomes from the BM of Ocn-Topaz mice in addition to GFP+ and GFP- GMPs were isolated for small RNA sequencing. In parallel, GMP populations were collected for mRNA sequencing. Global analysis of small RNA libraries from EVs and GMPs demonstrated that piRNAs was the most abundant species in both EVs (30%) and GMPs (18%). Surprisingly, EVs had low miRNA content (1.4%) compared to GMPs (9.2%) (Fig. 1D). When comparing GFP+ GMPs to GFP- ones, 6 miRNAs (mir-143, mir-122, mir-423-5p, mir-451, mir-206, mir-146b*) showed at least 100% increase in the GFP+GMPs. Predicted targets of mir-143, mir-206, mir-146 emerged as enriched sets when comparing gene expression of GFP+ and GFP- GMPs. In contrast, tRNAs was the most enriched species in EVs (10.5%) when compared to GMPs (2.5%) (Fig. 1D) and interestingly, GFP+ GMPs had higher content of tRNA when compared to GFP- (3.3% vs 1.7%) respectively. Given the role of tRNAs in translation and the emerging role of tRNA fragments (tRFs) in translation regulation and stress signaling, it was of interest to see translation and ribosome genesis among the top enriched gene sets when comparing GFP+ and GFP- GMPs. In conclusion, we present evidence for the in vivo transfer of bioactive EVs from osteoblasts to BM progenitor populations, and that this transfer alters hematopoietic cell function and gene expression. Moreover, we identify piRNAs and tRNAs as the most enriched species of small RNAs within BM derived EVs. Figure 1 Figure 1. Disclosures No relevant conflicts of interest to declare.


Sign in / Sign up

Export Citation Format

Share Document