scholarly journals An Indel Polymorphism in the Hybrid Incompatibility Gene Lethal Hybrid Rescue of Drosophila Is Functionally Relevant

Genetics ◽  
2012 ◽  
Vol 192 (2) ◽  
pp. 683-691 ◽  
Author(s):  
Shamoni Maheshwari ◽  
Daniel A. Barbash
2019 ◽  
Author(s):  
Jacob C. Cooper ◽  
Ping Guo ◽  
Jackson Bladen ◽  
Nitin Phadnis

AbstractHybrid incompatibilities are the result of deleterious interactions between diverged genes in the progeny of two species. In Drosophila, crosses between female D. melanogaster and males from the D. simulans clade (D. simulans, D. mauritiana, D. sechellia) fail to produce hybrid F1 males. When attempting to rescue hybrid F1 males by depleting the incompatible allele of a previously identified hybrid incompatibility gene, we observed robust rescue in crosses of D. melanogaster to D. simulans or D. mauritiana, but no rescue in crosses to D. sechellia. To investigate the genetic basis of D. sechellia resistance to hybrid rescue, we designed a triple-hybrid cross to generate recombinant D. sechellia / D. simulans genotypes. We tested the ability of those genotypes to rescue hybrid males with D. melanogaster, and used whole genome sequencing to measure the D. sechellia / D. simulans allele frequency of viable F1 males. We found that recombinant genotypes were rescued when they contained two specific loci from D. simulans – a region containing previously identified Lethal hybrid rescue (Lhr), and an unknown region of chromosome 3L which we name Sechellia aversion to hybrid rescue (Satyr). Our results show that the genetic basis for the recent evolution of this hybrid incompatibility is simple rather than a highly dispersed effect. Further, these data suggest that fixation of differences at Lhr after the split of the D. simulans clade strengthened the hybrid incompatibility between D. sechellia and D. melanogaster.


Evolution ◽  
2018 ◽  
Vol 72 (11) ◽  
pp. 2394-2405 ◽  
Author(s):  
Matthew P. Zuellig ◽  
Andrea L. Sweigart

Author(s):  
Erik Nelson ◽  
Qian Cong ◽  
Nick Grishin

Comparisons of genomes from recently diverged butterfly populations along a suture zone in central Texas have revealed high levels of divergence on the Z chromosome relative to autosomes, as measured by fixation index, $F_{st}$. The pattern of divergence appears to result from accumulation of incompatible alleles, obstructing introgression on the Z chromosome in hybrids. However, it is unknown whether this mechanism is sufficient to explain the data. Here, we simulate the effects of hybrid incompatibility on interbreeding butterfly populations using a model in which populations accumulate cross–incompatible alleles in allopatry prior to contact. We compute statistics for introgression and population divergence during contact between model butterfly populations and compare them to statistics obtained for 15 pairs of butterfly species interbreeding along the Texas suture zone. For populations that have evolved sufficiently in allopatry, the model exhibits high levels of divergence on the Z chromosome relative to autosomes in populations interbreeding on time scales comparable to periods of interglacial contact between butterfly populations in central Texas.Levels of divergence on the Z chromosome increase when interacting groups of genes are closely linked, consistent with interacting clusters of functionally related genes in butterfly genomes. Results for various periods in allopatry are in qualitative agreement with the pattern of data for butterflies, supporting a picture of speciation in which populations are subjected to cycles of divergence in glacial isolation, and partial fusion during interglacial contact.


2019 ◽  
Vol 62 (1) ◽  
pp. 353-360 ◽  
Author(s):  
Wenbo Cui ◽  
Nuan Liu ◽  
Xuelian Zhang ◽  
Yanghai Zhang ◽  
Lei Qu ◽  
...  

Abstract. Cell division cycle 25A (CDC25A), a member of the CDC25 family of phosphatases, is required for progression from G1 to the S phase of the cell cycle. CDC25A provides an essential function during early embryonic development in mice, suggesting that it plays an important role in growth and development. In this study, we used mathematical expectation (ME) methods to identify a 20-bp insertion/deletion (indel) polymorphism of CDC25A gene in Shaanbei White Cashmere (SBWC) goats. We also investigated the association between this 20-bp indel and growth-related traits in SBWC goats. Association results showed that the indel was related to growth traits (height at hip cross, cannon circumference, and cannon circumference index) in SBWC goats. The height at hip cross of individuals with insertion/insertion (II) genotype was higher than those with insertion/deletion (ID) genotype (P=0.02); on the contrary, the cannon circumference and cannon circumference index of individuals with ID genotype were superior when compared with those with II genotype (P=0.017 and P=0.009). These findings suggest that the 20-bp indel in the CDC25A gene significantly affects growth-related traits, and could be utilized as a candidate marker for marker-assisted selection (MAS) in the cashmere goat industry.


Sign in / Sign up

Export Citation Format

Share Document