ELECTRONIC STRUCTURE, CHARGE TRANSFER CHARACTER AND SPECTROSCOPIC PROPERTY OF ELECTROLUMINESCENT/PHOTOLUMINESCENT [ZnL2] (HL = 2-(1H-BENZO[d]IMIDAZOL-2-YL)-4-BROMOPHENOL) STUDIED BY DENSITY FUNCTIONAL THEORY

2015 ◽  
Vol 56 (3) ◽  
2017 ◽  
Vol 31 (25) ◽  
pp. 1750229 ◽  
Author(s):  
Xiangying Su ◽  
Hongling Cui ◽  
Weiwei Ju ◽  
Yongliang Yong ◽  
Xiaohong Li

In this paper, the geometric and electronic structure of MoS2 monolayer (ML) adsorbed on SiO2 (0001) surface were studied by using density functional theory calculations. The calculated interfacial binding energy shows that the MoS2/SiO2 hybrid system is stable. MoS2 ML is bound to the SiO2 surface with a big interlayer spacing and no covalent bonds form at the interface. The study of the density of states and the charge transfer indicates that the interaction between MoS2 ML and the SiO2 substrate is very weak. As a result, the electronic properties of MoS2 ML are almost not affected by the SiO2 substrate. This work will be beneficial to the design of MoS2 ML-based devices where a substrate is needed.


2011 ◽  
Vol 239-242 ◽  
pp. 1231-1234
Author(s):  
Qi Jun Liu ◽  
Zheng Tang Liu ◽  
Li Ping Feng ◽  
Hao Tian

The electronic properties of N-doped orthorhombic SrHfO3 have been calculated using the plane-wave ultrasoft pseudopotential technique based on the first-principles density-functional theory with the local density approximation. From the calculated band structure and density of states, the bandgap reduction is observed due to the presence of the N-2p states in the top of valence bands, which leads to red-shift. Moreover, in order to clarify the charge transfer and bonding properties of N-doped orthorhombic SrHfO3, we have calculated and analysed the charge density.


2005 ◽  
Vol 20 (1) ◽  
pp. 36-41
Author(s):  
Xiaofang Bi ◽  
Xiaoyu Yuan ◽  
Shengkai Gong ◽  
Huibin Xu

The effect of a Cu layer on the electronic structure and magnetic properties of Ni3Fe was studied by employing the discrete-variational method in the framework of density-functional theory. Three models were established for Ni3Fe(6), Ni3Fe(3)/Cu(3)/Ni3Fe(3), and Ni3Fe(3)/Cu(3). The charge transfer, magnetic moment, and spin exchange split at the Fermi level were obtained for Fe and Ni atoms in a Ni3Fe layer. The related characterizations of Ni3Fe were estimated from those of Fe and Ni atoms. It was discovered that the magnetic properties of the Ni3Fe layer improved when adjacent to Cu layer due to the improvement of the corresponding properties of the Fe atoms in the Ni3Fe. However, the magnetic moment and the spin exchange split of the Ni atoms in the Ni3Fe decreased when the Ni3Fe was adjacent to a Cu layer.


1998 ◽  
Vol 552 ◽  
Author(s):  
C. J. Humphreys ◽  
G. A. Botton ◽  
D. A. Pankhurst ◽  
V. J. Keast ◽  
W. M. Temmerman

ABSTRACTElectron energy loss spectroscopy and density functional theory have been used to show that there is a covalent component to the bonding in NiAl, CoAl and FeAl, between the transition metal atom and Al. There is no charge transfer and no ionic component to the bonding in NiAl and probably not in CoAl and FeAI. The bonding in non-stoichiometric NiAl is studied. Preliminary results are given for a Σ3 boundary in NiAl.


2019 ◽  
Vol 21 (44) ◽  
pp. 24478-24488 ◽  
Author(s):  
Martin Gleditzsch ◽  
Marc Jäger ◽  
Lukáš F. Pašteka ◽  
Armin Shayeghi ◽  
Rolf Schäfer

In depth analysis of doping effects on the geometric and electronic structure of tin clusters via electric beam deflection, numerical trajectory simulations and density functional theory.


2019 ◽  
Author(s):  
Brandon B. Bizzarro ◽  
Colin K. Egan ◽  
Francesco Paesani

<div> <div> <div> <p>Interaction energies of halide-water dimers, X<sup>-</sup>(H<sub>2</sub>O), and trimers, X<sup>-</sup>(H<sub>2</sub>O)<sub>2</sub>, with X = F, Cl, Br, and I, are investigated using various many-body models and exchange-correlation functionals selected across the hierarchy of density functional theory (DFT) approximations. Analysis of the results obtained with the many-body models demonstrates the need to capture important short-range interactions in the regime of large inter-molecular orbital overlap, such as charge transfer and charge penetration. Failure to reproduce these effects can lead to large deviations relative to reference data calculated at the coupled cluster level of theory. Decompositions of interaction energies carried out with the absolutely localized molecular orbital energy decomposition analysis (ALMO-EDA) method demonstrate that permanent and inductive electrostatic energies are accurately reproduced by all classes of XC functionals (from generalized gradient corrected (GGA) to hybrid and range-separated functionals), while significant variance is found for charge transfer energies predicted by different XC functionals. Since GGA and hybrid XC functionals predict the most and least attractive charge transfer energies, respectively, the large variance is likely due to the delocalization error. In this scenario, the hybrid XC functionals are then expected to provide the most accurate charge transfer energies. The sum of Pauli repulsion and dispersion energies are the most varied among the XC functionals, but it is found that a correspondence between the interaction energy and the ALMO EDA total frozen energy may be used to determine accurate estimates for these contributions. </p> </div> </div> </div>


2020 ◽  
Vol 3 (1) ◽  
pp. 20
Author(s):  
Valentina Ferraro ◽  
Marco Bortoluzzi

The influence of copper(I) halides CuX (X = Cl, Br, I) on the electronic structure of N,N′-diisopropylcarbodiimide (DICDI) and N,N′-dicyclohexylcarbodiimide (DCC) was investigated by means of computational DFT (density functional theory) methods. The coordination of the considered carbodiimides occurs by one of the nitrogen atoms, with the formation of linear complexes having a general formula of [CuX(carbodiimide)]. Besides varying the carbon–nitrogen bond lengths, the thermodynamically favourable interaction with Cu(I) reduces the electron density on the carbodiimides and alters the energies of the (NCN)-centred, unoccupied orbitals. A small dependence of these effects on the choice of the halide was observable. The computed Fukui functions suggested negligible interaction of Cu(I) with incoming nucleophiles, and the reactivity of carbodiimides was altered by coordination mainly because of the increased electrophilicity of the {NCN} fragments.


Sign in / Sign up

Export Citation Format

Share Document