Finite Element Analysis for Residual Stress, Strain and Temperature Characteristics of Butt Welded Steel Plate – a Review

2012 ◽  
Vol 2 (6) ◽  
pp. 163-165
Author(s):  
Deepak M. Badgujar ◽  
◽  
S.P.Shekhawat S.P.Shekhawat
2018 ◽  
Vol 62 (2) ◽  
pp. 289-300 ◽  
Author(s):  
Guoxiang Xu ◽  
Haichao Pan ◽  
Peng Liu ◽  
Pengfei Li ◽  
Qingxian Hu ◽  
...  

2008 ◽  
Vol 130 (4) ◽  
Author(s):  
Wen-Chun Jiang ◽  
Jian-Ming Gong ◽  
Hu Chen ◽  
S. T. Tu

This paper presented a finite element analysis of the effect of brazed residual stress on creep for stainless steel plate-fin structure using finite element code ABAQUS. The as-brazed residual stress distribution generated during the brazing process was obtained. Two cases, which are denoted Cases 1 and 2, were analyzed and compared to discuss the effect of as-brazed residual stress on creep. Case 1 was to carry out creep analysis just at the internal operating pressure. Case 2 was to perform the creep analysis considering the internal operating pressure in conjunction with as-brazed residual stress. The results show that due to the mechanical property mismatch between filler metal and base metal, large residual stress is generated in the brazed joint, which has a great influence on creep for stainless steel plate-fin structure. The creep strain and stress distribution of the overall plate-fin structure is obtained. The position that is most likely to fail is the fillet for the plate-fin structure at high temperature. Especially in the fillet interface, the creep strain and stress distribution are discontinuous and uncoordinated, which have great effect on creep failure.


2015 ◽  
Vol 76 ◽  
pp. 522-527
Author(s):  
M. Shamil Jaffarullah ◽  
Nur’Amirah Busu ◽  
Cheng Yee Low ◽  
J.B. Saedon ◽  
Armansyah ◽  
...  

2008 ◽  
Vol 575-578 ◽  
pp. 1461-1466
Author(s):  
Byeong Choon Goo ◽  
Jung Won Seo

Railcar wheels and axles belong to the most critical components in railway vehicles. The service conditions of railway vehicles have been more severe in recent years due to speed-up. Therefore, a more precise evaluation of railcar wheel life and safety has been requested. Wheel/rail contact fatigue and thermal cracks due to braking are two major mechanisms of the railcar wheel failure. One of the main sources influencing on the contact zone failure is residual stress. The residual stress in wheels formed during heat treatment in manufacturing changes in the process of braking. Thus the fatigue life of railcar wheels should be estimated by considering both thermal stress and rolling contact. Also, the effect of residual stress variation due to manufacturing process and braking process should be included in simulating contact fatigue behavior. In this paper, an evaluation procedure for the contact fatigue life of railcar wheels considering the effects of residual stresses due to heat treatment, braking and repeated contact load is proposed. And the cyclic stressstrain history for fatigue analysis is simulated by finite element analysis for the moving contact load.


2004 ◽  
Vol 32 (2) ◽  
pp. 257-263 ◽  
Author(s):  
M. L. Raghavan ◽  
S. Trivedi ◽  
A. Nagaraj ◽  
D. D. McPherson ◽  
K. B. Chandran

Sign in / Sign up

Export Citation Format

Share Document